Claude Code Agent协调机制
11个专业Agent的智能协作和多维路由决策深度分析
目录
Agent生态概览
Agent架构体系
Agent能力矩阵
typescript
interface AgentEcosystemMatrix {
// Agent分类体系
agent_categories: {
technical_experts: {
architect: 'System design and long-term architecture',
frontend: 'UI/UX and user-facing development',
backend: 'Server-side and infrastructure systems',
security: 'Threat modeling and vulnerability assessment',
performance: 'Optimization and bottleneck elimination'
},
process_quality: {
analyzer: 'Root cause analysis and investigation',
qa: 'Quality assurance and testing',
refactorer: 'Code quality and technical debt management',
devops: 'Infrastructure and deployment automation'
},
knowledge_communication: {
mentor: 'Educational guidance and knowledge transfer',
scribe: 'Professional documentation and localization'
}
};
// 能力评估维度
capability_dimensions: {
domain_expertise: 'Specialized knowledge depth (0-1.0)',
collaboration_skill: 'Inter-agent cooperation ability (0-1.0)',
decision_confidence: 'Decision-making reliability (0-1.0)',
adaptability: 'Context adaptation capability (0-1.0)',
communication_clarity: 'Output clarity and usefulness (0-1.0)'
};
// 协作模式
collaboration_patterns: {
primary_lead: 'Agent leads the entire operation',
consultant_support: 'Agent provides specialized input',
validator_review: 'Agent validates decisions and outputs',
coordinator_orchestrate: 'Agent manages multi-agent workflows'
};
}Agent专业化特征
typescript
class AgentSpecializationProfiles {
// 技术架构专家
static readonly ARCHITECT = {
domain_focus: ['system_design', 'scalability', 'long_term_maintainability'],
decision_framework: {
priorities: 'Long-term maintainability > Scalability > Performance > Short-term gains',
principles: ['System thinking', 'Future-proofing', 'Dependency management'],
optimization_targets: ['architectural_complexity', 'technical_debt', 'system_cohesion']
},
collaboration_preferences: {
leads_with: ['performance', 'security'],
consults_from: ['frontend', 'backend', 'devops'],
validates_through: ['analyzer', 'qa']
},
mcp_server_preferences: {
primary: 'Sequential', // For comprehensive architectural analysis
secondary: 'Context7', // For architectural patterns and best practices
avoids: 'Magic' // Focuses on architecture rather than generation
},
auto_activation_triggers: {
keywords: ['architecture', 'design', 'scalability', 'system'],
complexity_threshold: 0.7,
multi_module_involvement: true,
estimation_with_architecture: true
}
};
// 前端UX专家
static readonly FRONTEND = {
domain_focus: ['user_experience', 'accessibility', 'performance_optimization'],
decision_framework: {
priorities: 'User needs > Accessibility > Performance > Technical elegance',
principles: ['User-centered design', 'Accessibility by default', 'Performance awareness'],
performance_budgets: {
load_time: '3G: <3s, WiFi: <1s',
bundle_size: 'Initial: <500KB, Total: <2MB',
accessibility: 'WCAG 2.1 AA minimum (90%+)',
core_web_vitals: 'LCP <2.5s, FID <100ms, CLS <0.1'
}
},
collaboration_preferences: {
leads_with: ['qa'], // For E2E testing
consults_from: ['performance', 'security'],
validates_through: ['mentor'] // For user experience validation
},
mcp_server_preferences: {
primary: 'Magic', // For modern UI component generation
secondary: 'Playwright', // For user interaction testing
tertiary: 'Context7' // For frontend patterns and frameworks
},
auto_activation_triggers: {
keywords: ['component', 'responsive', 'accessibility', 'ui', 'ux'],
ui_component_requests: true,
design_system_work: true,
user_experience_mentions: true
}
};
// 后端可靠性专家
static readonly BACKEND = {
domain_focus: ['reliability', 'security', 'data_integrity', 'api_design'],
decision_framework: {
priorities: 'Reliability > Security > Performance > Features > Convenience',
principles: ['Reliability first', 'Security by default', 'Data integrity'],
reliability_budgets: {
uptime: '99.9% (8.7 hours downtime/year)',
error_rate: '<0.1% for critical operations',
response_time: '<200ms for API calls',
recovery_time: '<5 minutes for critical services'
}
},
collaboration_preferences: {
leads_with: ['security', 'devops'],
consults_from: ['performance', 'architect'],
validates_through: ['qa', 'analyzer']
},
mcp_server_preferences: {
primary: 'Context7', // For backend patterns and frameworks
secondary: 'Sequential', // For complex backend system analysis
avoids: 'Magic' // Focuses on backend logic rather than UI
},
auto_activation_triggers: {
keywords: ['api', 'database', 'service', 'reliability', 'server'],
server_side_development: true,
infrastructure_work: true,
security_data_integrity: true
}
};
// 安全威胁专家
static readonly SECURITY = {
domain_focus: ['threat_modeling', 'vulnerability_assessment', 'compliance'],
decision_framework: {
priorities: 'Security > Compliance > Reliability > Performance > Convenience',
principles: ['Security by default', 'Zero trust architecture', 'Defense in depth'],
threat_assessment_matrix: {
threat_levels: 'Critical (immediate), High (24h), Medium (7d), Low (30d)',
attack_surface: 'External (100%), Internal (70%), Isolated (40%)',
data_sensitivity: 'PII/Financial (100%), Business (80%), Public (30%)',
compliance_requirements: 'Regulatory (100%), Industry (80%), Internal (60%)'
}
},
collaboration_preferences: {
leads_with: ['backend', 'devops'],
consults_from: ['architect', 'analyzer'],
validates_through: ['qa', 'mentor']
},
mcp_server_preferences: {
primary: 'Sequential', // For threat modeling and security analysis
secondary: 'Context7', // For security patterns and compliance standards
avoids: 'Magic' // UI generation doesn't align with security analysis
},
auto_activation_triggers: {
keywords: ['vulnerability', 'threat', 'compliance', 'security', 'auth'],
security_scans: true,
assessment_work: true,
authentication_authorization: true
}
};
}激活决策引擎
多因素评分系统
typescript
class AgentActivationEngine {
private readonly scoringFactors = {
keyword_matching: 0.3, // 关键词匹配权重
context_analysis: 0.4, // 上下文分析权重
user_history: 0.2, // 用户历史权重
performance_metrics: 0.1 // 性能指标权重
};
private readonly activationThreshold = 0.7;
private readonly userBehaviorTracker = new UserBehaviorTracker();
private readonly performanceMonitor = new AgentPerformanceMonitor();
async determineAgentActivation(
request: UserRequest,
context: ExecutionContext
): Promise<AgentActivationDecision> {
// 1. 为每个Agent计算激活分数
const agentScores = await this.calculateAgentScores(request, context);
// 2. 应用激活阈值过滤
const candidateAgents = this.filterByCandidateThreshold(agentScores);
// 3. 协作模式决策
const collaborationPlan = await this.designCollaborationPlan(candidateAgents, context);
// 4. 资源分配优化
const resourceAllocation = this.optimizeResourceAllocation(collaborationPlan);
return {
activatedAgents: collaborationPlan.agents,
collaborationMode: collaborationPlan.mode,
resourceAllocation,
confidence: this.calculateOverallConfidence(agentScores),
reasoning: this.generateActivationReasoning(agentScores, collaborationPlan)
};
}
private async calculateAgentScores(
request: UserRequest,
context: ExecutionContext
): Promise<Map<AgentType, AgentScore>> {
const scores = new Map<AgentType, AgentScore>();
for (const agentType of this.getAllAgentTypes()) {
// 并行计算各评分因子
const [keywordScore, contextScore, historyScore, performanceScore] = await Promise.all([
this.calculateKeywordScore(request, agentType),
this.calculateContextScore(request, context, agentType),
this.calculateHistoryScore(context.userId, agentType),
this.calculatePerformanceScore(agentType)
]);
// 加权综合评分
const totalScore =
keywordScore * this.scoringFactors.keyword_matching +
contextScore * this.scoringFactors.context_analysis +
historyScore * this.scoringFactors.user_history +
performanceScore * this.scoringFactors.performance_metrics;
scores.set(agentType, {
total: totalScore,
breakdown: { keywordScore, contextScore, historyScore, performanceScore },
confidence: this.calculateScoreConfidence(keywordScore, contextScore),
reasoning: this.generateScoreReasoning(agentType, {
keywordScore, contextScore, historyScore, performanceScore
})
});
}
return scores;
}
private async calculateKeywordScore(
request: UserRequest,
agentType: AgentType
): Promise<number> {
const agentKeywords = this.getAgentKeywords(agentType);
const requestText = this.extractTextFromRequest(request);
// 1. 直接关键词匹配
const directMatches = this.findDirectMatches(requestText, agentKeywords.direct);
const directScore = Math.min(directMatches.length * 0.2, 0.8);
// 2. 语义相关性匹配
const semanticScore = await this.calculateSemanticSimilarity(requestText, agentKeywords.semantic);
// 3. 上下文线索匹配
const contextualScore = this.findContextualClues(requestText, agentKeywords.contextual);
// 4. 综合评分(直接匹配权重最高)
return Math.min(directScore * 0.6 + semanticScore * 0.3 + contextualScore * 0.1, 1.0);
}
private async calculateContextScore(
request: UserRequest,
context: ExecutionContext,
agentType: AgentType
): Promise<number> {
let contextScore = 0;
// 1. 项目类型匹配
const projectTypeScore = this.assessProjectTypeAlignment(context.projectType, agentType);
contextScore += projectTypeScore * 0.3;
// 2. 任务复杂度匹配
const complexityScore = this.assessComplexityAlignment(context.complexity, agentType);
contextScore += complexityScore * 0.25;
// 3. 技术栈匹配
const techStackScore = this.assessTechStackAlignment(context.techStack, agentType);
contextScore += techStackScore * 0.2;
// 4. 当前阶段匹配
const phaseScore = this.assessProjectPhaseAlignment(context.projectPhase, agentType);
contextScore += phaseScore * 0.15;
// 5. 紧急程度匹配
const urgencyScore = this.assessUrgencyAlignment(context.urgency, agentType);
contextScore += urgencyScore * 0.1;
return Math.min(contextScore, 1.0);
}
private async calculateHistoryScore(
userId: string,
agentType: AgentType
): Promise<number> {
const userHistory = await this.userBehaviorTracker.getUserHistory(userId);
// 1. Agent使用频率
const usageFrequency = userHistory.getAgentUsageFrequency(agentType);
const frequencyScore = Math.min(usageFrequency * 2, 0.4);
// 2. 用户满意度
const satisfactionScore = userHistory.getAgentSatisfactionScore(agentType);
const satisfactionWeight = satisfactionScore * 0.3;
// 3. 成功协作历史
const collaborationScore = userHistory.getCollaborationSuccessRate(agentType);
const collaborationWeight = collaborationScore * 0.2;
// 4. 最近使用偏好
const recentPreference = userHistory.getRecentPreferenceScore(agentType);
const recentWeight = recentPreference * 0.1;
return frequencyScore + satisfactionWeight + collaborationWeight + recentWeight;
}
private calculatePerformanceScore(agentType: AgentType): number {
const performanceData = this.performanceMonitor.getAgentPerformance(agentType);
// 1. 响应时间评分
const responseTimeScore = this.normalizeResponseTime(performanceData.averageResponseTime);
// 2. 成功率评分
const successRateScore = performanceData.successRate;
// 3. 资源效率评分
const efficiencyScore = this.calculateResourceEfficiency(performanceData.resourceUsage);
// 4. 用户反馈评分
const feedbackScore = performanceData.userFeedbackScore;
return (responseTimeScore * 0.3 + successRateScore * 0.4 + efficiencyScore * 0.2 + feedbackScore * 0.1);
}
private async designCollaborationPlan(
candidateAgents: AgentScore[],
context: ExecutionContext
): Promise<CollaborationPlan> {
if (candidateAgents.length === 0) {
return this.createDefaultCollaborationPlan(context);
}
if (candidateAgents.length === 1) {
return this.createSingleAgentPlan(candidateAgents[0]);
}
// 多Agent协作规划
return this.createMultiAgentPlan(candidateAgents, context);
}
private createMultiAgentPlan(
candidateAgents: AgentScore[],
context: ExecutionContext
): CollaborationPlan {
// 1. 按分数排序
const sortedAgents = candidateAgents.sort((a, b) => b.total - a.total);
// 2. 选择主导Agent
const primaryAgent = sortedAgents[0];
// 3. 选择辅助Agent(基于协作兼容性)
const supportingAgents = this.selectSupportingAgents(primaryAgent, sortedAgents.slice(1));
// 4. 确定协作模式
const collaborationMode = this.determineCollaborationMode(primaryAgent, supportingAgents, context);
return {
mode: collaborationMode,
agents: [
{ agent: primaryAgent.agentType, role: 'primary', allocation: 0.6 },
...supportingAgents.map(agent => ({
agent: agent.agentType,
role: this.determineAgentRole(agent, primaryAgent),
allocation: this.calculateAgentAllocation(agent, supportingAgents.length)
}))
],
coordination: this.designCoordinationStrategy(primaryAgent, supportingAgents),
expectedOutcome: this.predictCollaborationOutcome(primaryAgent, supportingAgents)
};
}
private selectSupportingAgents(
primaryAgent: AgentScore,
candidates: AgentScore[]
): AgentScore[] {
const supportingAgents: AgentScore[] = [];
const maxSupportingAgents = 3; // 限制辅助Agent数量
for (const candidate of candidates) {
if (supportingAgents.length >= maxSupportingAgents) break;
// 检查协作兼容性
const compatibility = this.assessCollaborationCompatibility(primaryAgent, candidate);
if (compatibility > 0.5) {
supportingAgents.push(candidate);
}
}
return supportingAgents;
}
private assessCollaborationCompatibility(
primaryAgent: AgentScore,
candidateAgent: AgentScore
): number {
// 1. 领域互补性
const domainComplementarity = this.calculateDomainComplementarity(
primaryAgent.agentType,
candidateAgent.agentType
);
// 2. 协作历史
const collaborationHistory = this.getCollaborationHistory(
primaryAgent.agentType,
candidateAgent.agentType
);
// 3. 冲突概率
const conflictProbability = this.assessConflictProbability(
primaryAgent.agentType,
candidateAgent.agentType
);
// 4. 资源竞争
const resourceCompetition = this.assessResourceCompetition(
primaryAgent.agentType,
candidateAgent.agentType
);
return (
domainComplementarity * 0.4 +
collaborationHistory * 0.3 -
conflictProbability * 0.2 -
resourceCompetition * 0.1
);
}
}动态激活策略
typescript
class DynamicActivationStrategies {
// 场景驱动激活
static readonly SCENARIO_DRIVEN = {
performance_issues: {
triggers: ['slow_response', 'high_resource_usage', 'bottleneck_detected'],
primary_agent: 'performance',
supporting_agents: ['analyzer', 'backend'],
confidence_boost: 0.2
},
security_concerns: {
triggers: ['vulnerability_mention', 'auth_failure', 'compliance_gap'],
primary_agent: 'security',
supporting_agents: ['backend', 'devops'],
confidence_boost: 0.3
},
ui_ux_tasks: {
triggers: ['component_creation', 'responsive_design', 'accessibility'],
primary_agent: 'frontend',
supporting_agents: ['qa', 'mentor'],
confidence_boost: 0.25
},
complex_debugging: {
triggers: ['multi_component_failure', 'root_cause_investigation'],
primary_agent: 'analyzer',
supporting_agents: ['backend', 'frontend', 'performance'],
confidence_boost: 0.15
},
documentation_tasks: {
triggers: ['readme_creation', 'api_documentation', 'guide_writing'],
primary_agent: 'scribe',
supporting_agents: ['mentor', 'architect'],
confidence_boost: 0.2
}
};
// 上下文自动激活
static readonly CONTEXT_AUTO_ACTIVATION = {
project_phase_mapping: {
planning: ['architect', 'analyzer'],
development: ['frontend', 'backend', 'qa'],
testing: ['qa', 'performance', 'security'],
deployment: ['devops', 'security'],
maintenance: ['analyzer', 'performance', 'refactorer']
},
complexity_threshold_activation: {
high_complexity: {
threshold: 0.8,
mandatory_agents: ['architect', 'analyzer'],
recommended_agents: ['security', 'performance']
},
medium_complexity: {
threshold: 0.5,
mandatory_agents: [],
recommended_agents: ['qa', 'refactorer']
}
},
technology_stack_activation: {
frontend_frameworks: {
patterns: ['react', 'vue', 'angular', 'svelte'],
agents: ['frontend', 'qa'],
confidence_modifier: 0.3
},
backend_frameworks: {
patterns: ['express', 'fastapi', 'spring', 'django'],
agents: ['backend', 'security'],
confidence_modifier: 0.3
},
database_systems: {
patterns: ['postgresql', 'mongodb', 'redis', 'elasticsearch'],
agents: ['backend', 'performance'],
confidence_modifier: 0.2
}
}
};
// 学习式激活
static readonly LEARNING_BASED_ACTIVATION = {
success_pattern_learning: {
track_metrics: ['task_completion_rate', 'user_satisfaction', 'execution_time'],
adaptation_rate: 0.1,
confidence_threshold: 0.8
},
failure_pattern_avoidance: {
track_failures: ['agent_conflicts', 'resource_contention', 'poor_outcomes'],
penalty_factor: 0.2,
recovery_time: '7_days'
},
user_preference_adaptation: {
preference_weight: 0.3,
learning_window: '30_days',
min_interactions: 10
}
};
}协作模式体系
协作架构模式
typescript
interface CollaborationArchitecture {
// 核心协作模式
collaboration_modes: {
hierarchical: {
structure: 'Primary agent leads, others support',
decision_flow: 'Top-down with specialized input',
conflict_resolution: 'Primary agent has final authority',
use_cases: ['Complex system design', 'Critical security decisions']
},
collaborative: {
structure: 'Equal partners with specialized roles',
decision_flow: 'Consensus-based with domain expertise',
conflict_resolution: 'Negotiation and compromise',
use_cases: ['Multi-domain problems', 'Cross-functional features']
},
consultative: {
structure: 'One primary agent, others as consultants',
decision_flow: 'Primary decides after gathering input',
conflict_resolution: 'Primary weighs expert opinions',
use_cases: ['Domain-specific tasks with dependencies']
},
pipeline: {
structure: 'Sequential hand-offs between agents',
decision_flow: 'Stage-gate progression',
conflict_resolution: 'Stage-specific authority',
use_cases: ['Development lifecycle workflows']
}
};
// 角色定义
agent_roles: {
primary: 'Leads overall execution and makes final decisions',
consultant: 'Provides specialized expertise and recommendations',
validator: 'Reviews decisions and validates quality',
coordinator: 'Manages workflow and resolves conflicts'
};
// 协作协议
collaboration_protocols: {
communication: 'Structured message passing with semantic annotations',
decision_making: 'Evidence-based with confidence scoring',
conflict_resolution: 'Escalation hierarchy with fallback mechanisms',
knowledge_sharing: 'Centralized context with incremental updates'
};
}
class CollaborationOrchestrator {
private communicationBus = new AgentCommunicationBus();
private decisionManager = new CollaborativeDecisionManager();
private conflictResolver = new AgentConflictResolver();
private knowledgeBase = new SharedKnowledgeBase();
async orchestrateCollaboration(
collaborationPlan: CollaborationPlan,
task: CollaborativeTask
): Promise<CollaborationResult> {
// 1. 协作环境初始化
const collaborationContext = await this.initializeCollaborationContext(collaborationPlan, task);
// 2. Agent角色分配和激活
const activeAgents = await this.activateAgents(collaborationPlan.agents);
// 3. 共享知识基础建立
await this.establishSharedKnowledge(activeAgents, task);
// 4. 协作执行
const executionResult = await this.executeCollaborativeTask(
activeAgents,
task,
collaborationContext
);
// 5. 结果整合和验证
const integratedResult = await this.integrateAndValidateResults(executionResult);
// 6. 协作效果评估
const performanceMetrics = this.evaluateCollaborationPerformance(executionResult);
return {
task_result: integratedResult,
collaboration_metrics: performanceMetrics,
agent_contributions: this.analyzeAgentContributions(executionResult),
lessons_learned: this.extractLessonsLearned(executionResult)
};
}
private async executeCollaborativeTask(
agents: ActiveAgent[],
task: CollaborativeTask,
context: CollaborationContext
): Promise<CollaborationExecutionResult> {
const executionPlan = this.createCollaborationExecutionPlan(agents, task);
const results: AgentTaskResult[] = [];
const communicationLog: AgentMessage[] = [];
switch (context.mode) {
case 'hierarchical':
return this.executeHierarchicalCollaboration(agents, task, context);
case 'collaborative':
return this.executeCollaborativeMode(agents, task, context);
case 'consultative':
return this.executeConsultativeMode(agents, task, context);
case 'pipeline':
return this.executePipelineMode(agents, task, context);
default:
throw new Error(`Unknown collaboration mode: ${context.mode}`);
}
}
private async executeHierarchicalCollaboration(
agents: ActiveAgent[],
task: CollaborativeTask,
context: CollaborationContext
): Promise<CollaborationExecutionResult> {
const primaryAgent = agents.find(a => a.role === 'primary');
const supportingAgents = agents.filter(a => a.role !== 'primary');
// 1. 主导Agent任务分解
const taskBreakdown = await primaryAgent.agent.decomposeTask(task);
// 2. 子任务分配给支持Agent
const subtaskAssignments = this.assignSubtasks(taskBreakdown.subtasks, supportingAgents);
// 3. 并行执行子任务
const subtaskResults = await Promise.all(
subtaskAssignments.map(assignment =>
this.executeSubtaskWithAgent(assignment.subtask, assignment.agent, context)
)
);
// 4. 主导Agent整合结果
const integratedResult = await primaryAgent.agent.integrateResults(
subtaskResults,
task.originalRequirements
);
// 5. 支持Agent验证和反馈
const validationResults = await this.validateResultsWithSupportingAgents(
integratedResult,
supportingAgents
);
// 6. 最终决策
const finalResult = await primaryAgent.agent.makeFinalDecision(
integratedResult,
validationResults
);
return {
mode: 'hierarchical',
primary_result: finalResult,
supporting_results: subtaskResults,
validation_results: validationResults,
decision_trail: this.extractDecisionTrail(primaryAgent, supportingAgents),
communication_efficiency: this.calculateCommunicationEfficiency(context)
};
}
private async executeCollaborativeMode(
agents: ActiveAgent[],
task: CollaborativeTask,
context: CollaborationContext
): Promise<CollaborationExecutionResult> {
// 1. 共同任务理解
const sharedUnderstanding = await this.buildSharedTaskUnderstanding(agents, task);
// 2. 协作策略制定
const collaborationStrategy = await this.developCollaborationStrategy(agents, sharedUnderstanding);
// 3. 并行工作和持续沟通
const parallelWorkResults = await this.executeParallelWork(agents, collaborationStrategy);
// 4. 渐进式整合
const progressiveIntegration = await this.performProgressiveIntegration(parallelWorkResults);
// 5. 共识决策
const consensusResult = await this.reachConsensusDecision(agents, progressiveIntegration);
return {
mode: 'collaborative',
consensus_result: consensusResult,
individual_contributions: parallelWorkResults,
integration_steps: progressiveIntegration,
consensus_process: this.documentConsensusProcess(agents),
collaboration_quality: this.assessCollaborationQuality(parallelWorkResults)
};
}
private async buildSharedTaskUnderstanding(
agents: ActiveAgent[],
task: CollaborativeTask
): Promise<SharedUnderstanding> {
// 1. 每个Agent独立分析任务
const individualAnalyses = await Promise.all(
agents.map(agent => agent.agent.analyzeTask(task))
);
// 2. 分析结果对比和讨论
const analysisComparison = this.compareAnalyses(individualAnalyses);
// 3. 差异协调
const reconciliation = await this.reconcileAnalysisDifferences(
agents,
analysisComparison.differences
);
// 4. 共享理解文档
const sharedUnderstanding = this.synthesizeSharedUnderstanding(
individualAnalyses,
reconciliation
);
// 5. 确认和提交
await this.confirmSharedUnderstanding(agents, sharedUnderstanding);
return sharedUnderstanding;
}
private async executeParallelWork(
agents: ActiveAgent[],
strategy: CollaborationStrategy
): Promise<Map<AgentType, AgentWorkResult>> {
const workResults = new Map<AgentType, AgentWorkResult>();
const communicationChannels = this.setupCommunicationChannels(agents);
// 启动并行工作
const workPromises = agents.map(async (agent) => {
const workScope = strategy.getAgentWorkScope(agent.type);
const workResult = await this.executeAgentWork(
agent,
workScope,
communicationChannels.getChannelFor(agent.type)
);
workResults.set(agent.type, workResult);
return workResult;
});
// 等待所有并行工作完成
await Promise.all(workPromises);
return workResults;
}
private async executeAgentWork(
agent: ActiveAgent,
workScope: WorkScope,
communicationChannel: CommunicationChannel
): Promise<AgentWorkResult> {
const workResult: AgentWorkResult = {
agent_type: agent.type,
work_scope: workScope,
progress_updates: [],
intermediate_results: [],
final_result: null,
communication_log: []
};
// 监听其他Agent的进展
communicationChannel.onMessage((message) => {
workResult.communication_log.push(message);
// 根据消息调整工作策略
if (this.shouldAdjustWork(message, workScope)) {
this.adjustAgentWork(agent, workScope, message);
}
});
// 执行工作并定期更新
const workMonitor = setInterval(() => {
const progress = agent.agent.getWorkProgress();
workResult.progress_updates.push(progress);
// 广播进展信息
communicationChannel.broadcast({
from: agent.type,
type: 'progress_update',
content: progress,
timestamp: Date.now()
});
}, 5000); // 每5秒更新一次
try {
// 执行实际工作
const finalResult = await agent.agent.executeWork(workScope);
workResult.final_result = finalResult;
// 广播完成信息
communicationChannel.broadcast({
from: agent.type,
type: 'work_completed',
content: finalResult,
timestamp: Date.now()
});
} finally {
clearInterval(workMonitor);
}
return workResult;
}
}智能冲突解决
typescript
class AgentConflictResolver {
private conflictDetector = new ConflictDetectionSystem();
private resolutionStrategies = new Map<ConflictType, ResolutionStrategy>();
private escalationManager = new ConflictEscalationManager();
async resolveConflicts(
agents: ActiveAgent[],
conflictContext: ConflictContext
): Promise<ConflictResolutionResult> {
// 1. 冲突检测和分类
const detectedConflicts = await this.conflictDetector.detectConflicts(agents, conflictContext);
if (detectedConflicts.length === 0) {
return { status: 'no_conflicts', resolutions: [] };
}
// 2. 冲突优先级排序
const prioritizedConflicts = this.prioritizeConflicts(detectedConflicts);
// 3. 逐个解决冲突
const resolutions: ConflictResolution[] = [];
for (const conflict of prioritizedConflicts) {
const resolution = await this.resolveIndividualConflict(conflict, agents);
resolutions.push(resolution);
// 如果解决失败,考虑升级
if (!resolution.success && conflict.severity === 'high') {
const escalation = await this.escalationManager.escalateConflict(conflict, resolution);
resolutions.push(escalation);
}
}
return {
status: 'resolved',
resolutions,
remaining_conflicts: this.identifyRemainingConflicts(resolutions),
resolution_quality: this.assessResolutionQuality(resolutions)
};
}
private async resolveIndividualConflict(
conflict: DetectedConflict,
agents: ActiveAgent[]
): Promise<ConflictResolution> {
const strategy = this.selectResolutionStrategy(conflict);
switch (strategy.type) {
case 'PRIORITY_BASED':
return this.resolvePriorityBased(conflict, agents);
case 'NEGOTIATION':
return this.resolveByNegotiation(conflict, agents);
case 'COMPROMISE':
return this.resolveByCompromise(conflict, agents);
case 'DOMAIN_EXPERTISE':
return this.resolveByDomainExpertise(conflict, agents);
case 'USER_DECISION':
return this.resolveByUserDecision(conflict, agents);
default:
return this.resolveByDefaultStrategy(conflict, agents);
}
}
private async resolvePriorityBased(
conflict: DetectedConflict,
agents: ActiveAgent[]
): Promise<ConflictResolution> {
// 基于Agent优先级层次解决冲突
const agentPriorities = this.getAgentPriorityMatrix();
const conflictingAgents = conflict.involvedAgents;
// 找到最高优先级的Agent
const highestPriorityAgent = conflictingAgents.reduce((highest, current) => {
return agentPriorities.get(current.type) > agentPriorities.get(highest.type)
? current : highest;
});
// 应用最高优先级Agent的决策
const resolution = await highestPriorityAgent.agent.resolveConflict(conflict);
// 通知其他Agent接受决策
await this.notifyConflictResolution(conflictingAgents, resolution, 'priority_override');
return {
conflict_id: conflict.id,
strategy: 'PRIORITY_BASED',
winning_agent: highestPriorityAgent.type,
resolution: resolution,
acceptance_rate: await this.measureAcceptanceRate(conflictingAgents, resolution),
success: true
};
}
private async resolveByNegotiation(
conflict: DetectedConflict,
agents: ActiveAgent[]
): Promise<ConflictResolution> {
const conflictingAgents = conflict.involvedAgents;
const maxNegotiationRounds = 3;
let currentRound = 0;
let proposals = await this.gatherInitialProposals(conflictingAgents, conflict);
while (currentRound < maxNegotiationRounds) {
// 1. 分析提案差异
const proposalAnalysis = this.analyzeProposalDifferences(proposals);
// 2. 寻找妥协空间
const compromiseSpace = this.identifyCompromiseSpace(proposalAnalysis);
// 3. 如果找到可接受的妥协
if (compromiseSpace.viability > 0.7) {
const negotiatedSolution = this.synthesizeCompromiseSolution(compromiseSpace);
const acceptance = await this.checkProposalAcceptance(conflictingAgents, negotiatedSolution);
if (acceptance.unanimous) {
return {
conflict_id: conflict.id,
strategy: 'NEGOTIATION',
resolution: negotiatedSolution,
negotiation_rounds: currentRound + 1,
acceptance_rate: 1.0,
success: true
};
}
}
// 4. 生成下一轮提案
proposals = await this.generateNextRoundProposals(conflictingAgents, proposalAnalysis);
currentRound++;
}
// 协商失败,转为其他策略
return this.resolveByCompromise(conflict, agents);
}
private async resolveByDomainExpertise(
conflict: DetectedConflict,
agents: ActiveAgent[]
): Promise<ConflictResolution> {
// 基于领域专业知识解决冲突
const domainRelevance = this.assessDomainRelevance(conflict, agents);
// 选择最相关的领域专家
const domainExpert = agents.reduce((expert, current) => {
return domainRelevance.get(current.type) > domainRelevance.get(expert.type)
? current : expert;
});
// 专家决策
const expertDecision = await domainExpert.agent.makeExpertDecision(conflict);
// 验证决策的技术合理性
const technicalValidation = await this.validateTechnicalSoundness(expertDecision);
if (technicalValidation.valid) {
return {
conflict_id: conflict.id,
strategy: 'DOMAIN_EXPERTISE',
expert_agent: domainExpert.type,
resolution: expertDecision,
technical_validation: technicalValidation,
success: true
};
} else {
// 技术验证失败,升级处理
return this.escalateForTechnicalReview(conflict, expertDecision, technicalValidation);
}
}
private getAgentPriorityMatrix(): Map<AgentType, number> {
// Agent优先级矩阵(基于决策影响范围和专业性)
return new Map([
['architect', 100], // 最高优先级:系统架构决策
['security', 95], // 安全决策优先级极高
['performance', 90], // 性能决策影响全局
['backend', 85], // 后端稳定性关键
['frontend', 80], // 用户体验重要
['analyzer', 75], // 分析判断重要
['qa', 70], // 质量保证
['devops', 65], // 运维影响
['refactorer', 60], // 代码质量
['mentor', 55], // 知识传递
['scribe', 50] // 文档记录
]);
}
}智能路由机制
上下文感知路由
typescript
class ContextAwareRouting {
private contextAnalyzer = new ExecutionContextAnalyzer();
private routingPolicyEngine = new RoutingPolicyEngine();
private performancePredictor = new RoutingPerformancePredictor();
async routeRequest(
request: AgentRequest,
availableAgents: AgentPool
): Promise<RoutingDecision> {
// 1. 上下文深度分析
const contextAnalysis = await this.contextAnalyzer.analyzeRequestContext(request);
// 2. 路由策略生成
const routingStrategies = await this.generateRoutingStrategies(contextAnalysis, availableAgents);
// 3. 性能预测评估
const performancePredictions = await this.performancePredictor.predictRoutingPerformance(routingStrategies);
// 4. 最优路由选择
const optimalRouting = this.selectOptimalRouting(routingStrategies, performancePredictions);
// 5. 路由执行规划
const executionPlan = await this.planRoutingExecution(optimalRouting, contextAnalysis);
return {
selected_routing: optimalRouting,
execution_plan: executionPlan,
confidence: this.calculateRoutingConfidence(optimalRouting, performancePredictions),
fallback_options: this.generateFallbackOptions(routingStrategies),
expected_performance: performancePredictions.get(optimalRouting.id)
};
}
private async analyzeRequestContext(request: AgentRequest): Promise<ContextAnalysis> {
return {
// 技术上下文
technical_context: {
complexity_score: await this.assessTechnicalComplexity(request),
domain_breadth: this.analyzeDomainBreadth(request),
technology_stack: this.identifyTechnologyStack(request),
integration_requirements: this.analyzeIntegrationNeeds(request)
},
// 业务上下文
business_context: {
urgency_level: this.determineUrgencyLevel(request),
stakeholder_impact: this.assessStakeholderImpact(request),
compliance_requirements: this.identifyComplianceNeeds(request),
budget_constraints: this.analyzeBudgetConstraints(request)
},
// 执行上下文
execution_context: {
resource_availability: await this.checkResourceAvailability(),
time_constraints: this.analyzeTimeConstraints(request),
quality_requirements: this.determineQualityRequirements(request),
risk_tolerance: this.assessRiskTolerance(request)
},
// 历史上下文
historical_context: {
similar_requests: await this.findSimilarHistoricalRequests(request),
success_patterns: this.identifySuccessPatterns(request),
failure_patterns: this.identifyFailurePatterns(request),
performance_benchmarks: this.getPerformanceBenchmarks(request)
}
};
}
private async generateRoutingStrategies(
contextAnalysis: ContextAnalysis,
availableAgents: AgentPool
): Promise<RoutingStrategy[]> {
const strategies: RoutingStrategy[] = [];
// 1. 单Agent策略
if (contextAnalysis.technical_context.complexity_score < 0.3) {
strategies.push(...this.generateSingleAgentStrategies(contextAnalysis, availableAgents));
}
// 2. 协作Agent策略
if (contextAnalysis.technical_context.complexity_score >= 0.3) {
strategies.push(...this.generateCollaborativeStrategies(contextAnalysis, availableAgents));
}
// 3. 专业化策略
if (contextAnalysis.technical_context.domain_breadth > 2) {
strategies.push(...this.generateSpecializationStrategies(contextAnalysis, availableAgents));
}
// 4. 容错策略
if (contextAnalysis.execution_context.risk_tolerance < 0.5) {
strategies.push(...this.generateFaultTolerantStrategies(contextAnalysis, availableAgents));
}
return strategies;
}
private generateCollaborativeStrategies(
contextAnalysis: ContextAnalysis,
availableAgents: AgentPool
): RoutingStrategy[] {
const strategies: RoutingStrategy[] = [];
// 分析领域覆盖需求
const requiredDomains = this.identifyRequiredDomains(contextAnalysis);
// 生成领域覆盖策略
for (const domainCombination of this.generateDomainCombinations(requiredDomains)) {
const agentSelection = this.selectAgentsForDomains(domainCombination, availableAgents);
if (agentSelection.coverage > 0.8) {
strategies.push({
id: `collaborative_${domainCombination.join('_')}`,
type: 'collaborative',
agents: agentSelection.agents,
coordination_mode: this.determineCoordinationMode(agentSelection),
expected_coverage: agentSelection.coverage,
estimated_performance: this.estimateCollaborativePerformance(agentSelection)
});
}
}
return strategies;
}
private async predictRoutingPerformance(
strategies: RoutingStrategy[]
): Promise<Map<string, PerformancePrediction>> {
const predictions = new Map<string, PerformancePrediction>();
for (const strategy of strategies) {
const prediction = await this.predictIndividualStrategy(strategy);
predictions.set(strategy.id, prediction);
}
return predictions;
}
private async predictIndividualStrategy(strategy: RoutingStrategy): Promise<PerformancePrediction> {
// 基于历史数据和策略特征预测性能
const historicalData = await this.getHistoricalPerformanceData(strategy);
// 计算预期指标
const expectedMetrics = {
execution_time: this.predictExecutionTime(strategy, historicalData),
success_rate: this.predictSuccessRate(strategy, historicalData),
resource_usage: this.predictResourceUsage(strategy, historicalData),
quality_score: this.predictQualityScore(strategy, historicalData),
user_satisfaction: this.predictUserSatisfaction(strategy, historicalData)
};
// 计算预测置信度
const confidence = this.calculatePredictionConfidence(strategy, historicalData);
// 识别风险因素
const riskFactors = this.identifyRiskFactors(strategy, historicalData);
return {
strategy_id: strategy.id,
expected_metrics: expectedMetrics,
confidence: confidence,
risk_factors: riskFactors,
recommendation: this.generatePerformanceRecommendation(expectedMetrics, riskFactors)
};
}
private selectOptimalRouting(
strategies: RoutingStrategy[],
predictions: Map<string, PerformancePrediction>
): RoutingStrategy {
// 多目标优化评分
const scoredStrategies = strategies.map(strategy => {
const prediction = predictions.get(strategy.id);
// 加权评分计算
const score = this.calculateOverallScore(strategy, prediction);
return { strategy, prediction, score };
});
// 选择最高分策略
const bestStrategy = scoredStrategies.reduce((best, current) =>
current.score > best.score ? current : best
);
return bestStrategy.strategy;
}
private calculateOverallScore(
strategy: RoutingStrategy,
prediction: PerformancePrediction
): number {
const weights = {
execution_time: 0.25,
success_rate: 0.30,
resource_efficiency: 0.20,
quality_score: 0.15,
user_satisfaction: 0.10
};
// 归一化指标到0-1范围
const normalizedMetrics = {
execution_time: 1 - this.normalize(prediction.expected_metrics.execution_time, 0, 300000), // 5分钟最大
success_rate: prediction.expected_metrics.success_rate,
resource_efficiency: 1 - this.normalize(prediction.expected_metrics.resource_usage, 0, 1),
quality_score: prediction.expected_metrics.quality_score,
user_satisfaction: prediction.expected_metrics.user_satisfaction
};
// 加权综合评分
const weightedScore = Object.entries(weights).reduce((score, [metric, weight]) => {
return score + (normalizedMetrics[metric] * weight);
}, 0);
// 应用置信度和风险调整
const confidenceAdjustment = prediction.confidence;
const riskPenalty = this.calculateRiskPenalty(prediction.risk_factors);
return weightedScore * confidenceAdjustment * (1 - riskPenalty);
}
}自适应路由优化
typescript
class AdaptiveRoutingOptimizer {
private performanceTracker = new RoutingPerformanceTracker();
private feedbackCollector = new RoutingFeedbackCollector();
private optimizationEngine = new RoutingOptimizationEngine();
async optimizeRouting(
currentRouting: RoutingStrategy,
executionResult: ExecutionResult
): Promise<RoutingOptimization> {
// 1. 性能分析
const performanceAnalysis = await this.analyzeRoutingPerformance(
currentRouting,
executionResult
);
// 2. 反馈收集
const feedback = await this.collectRoutingFeedback(currentRouting, executionResult);
// 3. 改进机会识别
const improvementOpportunities = this.identifyImprovementOpportunities(
performanceAnalysis,
feedback
);
// 4. 优化策略生成
const optimizationStrategies = await this.generateOptimizationStrategies(
improvementOpportunities
);
// 5. 最佳优化选择
const selectedOptimization = this.selectOptimalOptimization(optimizationStrategies);
return {
current_performance: performanceAnalysis,
improvement_opportunities: improvementOpportunities,
recommended_optimization: selectedOptimization,
expected_improvement: this.calculateExpectedImprovement(selectedOptimization),
implementation_plan: this.createOptimizationImplementationPlan(selectedOptimization)
};
}
private async analyzeRoutingPerformance(
routing: RoutingStrategy,
result: ExecutionResult
): Promise<RoutingPerformanceAnalysis> {
return {
// 执行效率分析
execution_efficiency: {
actual_time: result.execution_time,
predicted_time: routing.predicted_execution_time,
efficiency_ratio: routing.predicted_execution_time / result.execution_time,
bottlenecks: this.identifyExecutionBottlenecks(result)
},
// 资源利用分析
resource_utilization: {
cpu_usage: result.resource_metrics.cpu_usage,
memory_usage: result.resource_metrics.memory_usage,
agent_utilization: this.calculateAgentUtilization(routing, result),
resource_waste: this.calculateResourceWaste(result)
},
// 协作效果分析
collaboration_effectiveness: {
communication_overhead: this.calculateCommunicationOverhead(result),
coordination_efficiency: this.assessCoordinationEfficiency(result),
conflict_rate: this.calculateConflictRate(result),
synergy_score: this.calculateSynergyScore(result)
},
// 质量结果分析
quality_outcomes: {
result_completeness: this.assessResultCompleteness(result),
result_accuracy: this.assessResultAccuracy(result),
user_satisfaction: result.user_feedback?.satisfaction_score || 0,
technical_quality: this.assessTechnicalQuality(result)
}
};
}
private identifyImprovementOpportunities(
performanceAnalysis: RoutingPerformanceAnalysis,
feedback: RoutingFeedback
): ImprovementOpportunity[] {
const opportunities: ImprovementOpportunity[] = [];
// 1. 执行效率改进
if (performanceAnalysis.execution_efficiency.efficiency_ratio < 0.8) {
opportunities.push({
category: 'execution_efficiency',
severity: 'high',
description: 'Execution time significantly exceeds prediction',
potential_improvement: 0.3,
suggested_actions: [
'Optimize agent selection',
'Improve task decomposition',
'Enhance parallel execution'
]
});
}
// 2. 资源利用改进
if (performanceAnalysis.resource_utilization.resource_waste > 0.2) {
opportunities.push({
category: 'resource_optimization',
severity: 'medium',
description: 'Significant resource waste detected',
potential_improvement: 0.2,
suggested_actions: [
'Rightsize agent allocation',
'Improve resource sharing',
'Optimize execution scheduling'
]
});
}
// 3. 协作效果改进
if (performanceAnalysis.collaboration_effectiveness.synergy_score < 0.7) {
opportunities.push({
category: 'collaboration_enhancement',
severity: 'medium',
description: 'Suboptimal agent collaboration detected',
potential_improvement: 0.25,
suggested_actions: [
'Improve agent compatibility matching',
'Enhance communication protocols',
'Optimize coordination strategies'
]
});
}
// 4. 质量结果改进
if (performanceAnalysis.quality_outcomes.user_satisfaction < 0.8) {
opportunities.push({
category: 'quality_enhancement',
severity: 'high',
description: 'User satisfaction below target',
potential_improvement: 0.4,
suggested_actions: [
'Improve result validation',
'Enhance user communication',
'Optimize output formatting'
]
});
}
return opportunities.sort((a, b) => b.potential_improvement - a.potential_improvement);
}
private async generateOptimizationStrategies(
opportunities: ImprovementOpportunity[]
): Promise<OptimizationStrategy[]> {
const strategies: OptimizationStrategy[] = [];
for (const opportunity of opportunities) {
switch (opportunity.category) {
case 'execution_efficiency':
strategies.push(...await this.generateExecutionOptimizations(opportunity));
break;
case 'resource_optimization':
strategies.push(...await this.generateResourceOptimizations(opportunity));
break;
case 'collaboration_enhancement':
strategies.push(...await this.generateCollaborationOptimizations(opportunity));
break;
case 'quality_enhancement':
strategies.push(...await this.generateQualityOptimizations(opportunity));
break;
}
}
return strategies;
}
private async generateExecutionOptimizations(
opportunity: ImprovementOpportunity
): Promise<OptimizationStrategy[]> {
return [
{
id: 'agent_selection_optimization',
category: opportunity.category,
description: 'Optimize agent selection based on performance history',
implementation: {
type: 'agent_selection_tuning',
parameters: {
performance_weight_increase: 0.2,
historical_data_window: '30_days',
success_rate_threshold: 0.9
}
},
expected_improvement: 0.15,
implementation_cost: 'low',
risk_level: 'low'
},
{
id: 'parallel_execution_enhancement',
category: opportunity.category,
description: 'Enhance parallel execution capabilities',
implementation: {
type: 'parallel_optimization',
parameters: {
max_parallel_agents: 8,
dependency_optimization: true,
load_balancing: 'dynamic'
}
},
expected_improvement: 0.25,
implementation_cost: 'medium',
risk_level: 'medium'
}
];
}
private async generateCollaborationOptimizations(
opportunity: ImprovementOpportunity
): Promise<OptimizationStrategy[]> {
return [
{
id: 'communication_protocol_optimization',
category: opportunity.category,
description: 'Optimize inter-agent communication protocols',
implementation: {
type: 'communication_enhancement',
parameters: {
message_batching: true,
priority_queuing: true,
compression_threshold: 1024
}
},
expected_improvement: 0.1,
implementation_cost: 'low',
risk_level: 'low'
},
{
id: 'agent_compatibility_tuning',
category: opportunity.category,
description: 'Improve agent compatibility assessment',
implementation: {
type: 'compatibility_optimization',
parameters: {
compatibility_algorithm: 'enhanced_ml',
learning_rate: 0.1,
collaboration_history_weight: 0.3
}
},
expected_improvement: 0.2,
implementation_cost: 'medium',
risk_level: 'low'
}
];
}
}操作检查清单
Agent激活决策检查清单
激活前验证 (Pre-Activation Checklist)
[ ] 请求分析完整性
- [ ] 已提取所有关键词和技术术语
- [ ] 已识别项目类型和技术栈
- [ ] 已评估任务复杂度 (0.0-1.0)
- [ ] 已确定紧急程度和优先级
[ ] 上下文评估充分性
- [ ] 已分析当前项目阶段
- [ ] 已检查资源可用性
- [ ] 已识别依赖关系和约束
- [ ] 已获取用户历史偏好
[ ] Agent候选评分
- [ ] 关键词匹配分数 ≥ 0.3
- [ ] 上下文相关性 ≥ 0.4
- [ ] 用户满意度历史 ≥ 0.7
- [ ] Agent性能指标 ≥ 0.8
[ ] 激活决策验证
- [ ] 总体置信度 ≥ 0.7
- [ ] 激活原因可解释
- [ ] 备选方案已准备
- [ ] 资源分配合理
Agent协作模式检查清单
协作启动前 (Pre-Collaboration)
[ ] 协作必要性验证
- [ ] 单Agent无法满足需求
- [ ] 任务复杂度 ≥ 0.5
- [ ] 涉及多个专业领域
- [ ] 预期协作效益 > 协调成本
[ ] Agent选择验证
- [ ] 领域覆盖完整性 ≥ 80%
- [ ] Agent间兼容性 ≥ 0.6
- [ ] 冲突概率 ≤ 0.3
- [ ] 资源竞争程度 ≤ 0.2
[ ] 协作模式选择
- [ ] 模式与任务特性匹配
- [ ] 决策流程清晰明确
- [ ] 角色职责界定明确
- [ ] 冲突解决机制就绪
协作执行中 (During Collaboration)
[ ] 通信效率监控
- [ ] 消息传递延迟 ≤ 100ms
- [ ] 通信开销 ≤ 总资源10%
- [ ] 信息同步完整性 ≥ 95%
- [ ] 决策传达及时性
[ ] 进度协调检查
- [ ] 各Agent进度同步
- [ ] 依赖关系满足
- [ ] 里程碑按时达成
- [ ] 资源分配平衡
冲突解决检查清单
冲突检测 (Conflict Detection)
[ ] 冲突识别完整性
- [ ] 决策分歧已识别
- [ ] 资源竞争已发现
- [ ] 优先级冲突已标记
- [ ] 方法论差异已记录
[ ] 冲突严重性评估
- [ ] 影响范围已评估
- [ ] 解决紧急程度已确定
- [ ] 升级条件已检查
- [ ] 风险等级已分类
冲突解决 (Conflict Resolution)
[ ] 解决策略选择
- [ ] 策略与冲突类型匹配
- [ ] 解决成本可接受
- [ ] 预期成功率 ≥ 0.7
- [ ] 副作用风险可控
[ ] 解决过程验证
- [ ] 所有当事Agent参与
- [ ] 解决过程公平透明
- [ ] 证据充分客观
- [ ] 决策理由可追溯
[ ] 解决结果确认
- [ ] 解决方案被接受
- [ ] 后续行动明确
- [ ] 学习经验记录
- [ ] 预防措施制定
性能监控检查清单
实时监控 (Real-time Monitoring)
[ ] 响应时间监控
- [ ] Agent激活时间 ≤ 200ms
- [ ] 决策制定时间 ≤ 500ms
- [ ] 任务执行时间符合预期
- [ ] 总体响应时间 ≤ SLA
[ ] 资源使用监控
- [ ] CPU使用率 ≤ 80%
- [ ] 内存使用率 ≤ 75%
- [ ] 网络带宽使用合理
- [ ] 存储空间充足
[ ] 质量指标监控
- [ ] 任务完成率 ≥ 95%
- [ ] 结果准确性 ≥ 90%
- [ ] 用户满意度 ≥ 85%
- [ ] 错误率 ≤ 5%
周期性评估 (Periodic Assessment)
- [ ] 性能趋势分析
- [ ] 响应时间趋势稳定
- [ ] 资源使用优化
- [ ] 错误率下降趋势
- [ ] 用户满意度提升
命令参考
Agent激活命令
bash
# 手动激活特定Agent
/activate-agent --type [agent_type] --confidence [0.0-1.0] --priority [high|medium|low]
# 示例
/activate-agent --type architect --confidence 0.9 --priority high
/activate-agent --type security --confidence 0.8 --priority medium
# 查询Agent状态
/agent-status --type [agent_type] --details [basic|full]
/agent-status --type all --details full
# Agent性能查询
/agent-performance --type [agent_type] --period [1h|24h|7d|30d]
/agent-performance --type frontend --period 24h协作控制命令
bash
# 启动Agent协作
/start-collaboration --agents [agent1,agent2,...] --mode [hierarchical|collaborative|consultative|pipeline]
# 示例
/start-collaboration --agents architect,security,backend --mode hierarchical
/start-collaboration --agents frontend,qa --mode collaborative
# 协作状态监控
/collaboration-status --session-id [id] --details [summary|full]
# 协作优化
/optimize-collaboration --session-id [id] --strategy [efficiency|quality|speed]路由管理命令
bash
# 路由策略查看
/routing-strategy --current --details [summary|full]
# 路由性能分析
/routing-performance --period [1h|24h|7d] --metrics [all|efficiency|quality|satisfaction]
# 路由优化
/optimize-routing --strategy [adaptive|performance|quality] --apply [true|false]
# 路由历史查询
/routing-history --limit [number] --filter [success|failure|all]冲突管理命令
bash
# 冲突检测
/detect-conflicts --scope [current|all] --threshold [0.0-1.0]
# 冲突解决
/resolve-conflict --conflict-id [id] --strategy [priority|negotiation|compromise|expertise]
# 冲突历史
/conflict-history --period [24h|7d|30d] --status [resolved|pending|escalated]
# 冲突预防设置
/conflict-prevention --enable-rules [list] --threshold [0.0-1.0]性能诊断命令
bash
# 系统性能检查
/system-health --comprehensive --include [agents|routing|collaboration|conflicts]
# 性能基准测试
/performance-benchmark --duration [minutes] --load [light|medium|heavy]
# 性能报告生成
/generate-report --type [performance|collaboration|routing] --period [24h|7d|30d] --format [json|html|pdf]
# 性能优化建议
/optimization-recommendations --focus [speed|quality|efficiency|cost] --priority [high|medium|low]配置管理命令
bash
# 配置查看
/config-view --section [agents|routing|collaboration|performance] --format [json|yaml|table]
# 配置更新
/config-update --section [section] --key [key] --value [value] --validate
# 配置备份
/config-backup --include [all|agents|routing|collaboration] --format [json|yaml]
# 配置恢复
/config-restore --backup-file [path] --section [all|specific] --validate学习与适应命令
bash
# 学习模式控制
/learning-mode --enable [true|false] --rate [0.1-1.0] --validation [strict|moderate|loose]
# 适应性调整
/adaptation-tuning --component [activation|routing|collaboration] --sensitivity [low|medium|high]
# 学习效果评估
/learning-assessment --period [7d|30d|90d] --metrics [accuracy|efficiency|satisfaction]
# 模型重训练
/retrain-models --component [all|activation|routing|conflict] --data-period [30d|90d|180d]小结
Claude Code 的 Agent 协调机制展现了现代多智能体系统的几个关键特征:
核心创新
- 多因素智能激活: 关键词、上下文、历史、性能的综合评分
- 动态协作模式: 层次、协作、咨询、流水线的灵活切换
- 智能冲突解决: 优先级、协商、妥协、专业性的多层解决
- 自适应路由优化: 基于执行反馈的持续改进
技术优势
- 精准激活: 70%+ 置信度阈值确保Agent选择准确性
- 高效协作: 多种协作模式适应不同任务复杂度
- 智能解决: 自动化冲突检测和多策略解决机制
- 持续优化: 基于性能反馈的路由策略自适应调整
协作效果
- 专业化优势: 11个专业Agent覆盖开发全生命周期
- 协同增效: 多Agent协作实现单Agent无法达到的复杂任务处理
- 质量保证: 多层验证和交叉检查确保输出质量
- 用户满意: 智能匹配和持续优化提升用户体验
实用价值
- 操作标准化: 详细检查清单确保流程一致性
- 命令化管理: 丰富的命令集支持精细化控制
- 性能可视: 全面监控和报告系统
- 持续改进: 学习适应机制支持系统进化
这套 Agent 协调机制不仅支持了 Claude Code 当前的多Agent协作能力,也为未来更复杂的AI协作场景提供了可扩展的技术架构。通过检查清单和命令系统,使得复杂的协调机制变得可操作、可监控、可优化。
下一步: 查看 命令系统原理 了解24个核心命令的解析和执行机制