Skip to content

Claude Code Agent协调机制

11个专业Agent的智能协作和多维路由决策深度分析

目录

Agent生态概览

Agent架构体系

Agent能力矩阵

typescript
interface AgentEcosystemMatrix {
  // Agent分类体系
  agent_categories: {
    technical_experts: {
      architect: 'System design and long-term architecture',
      frontend: 'UI/UX and user-facing development', 
      backend: 'Server-side and infrastructure systems',
      security: 'Threat modeling and vulnerability assessment',
      performance: 'Optimization and bottleneck elimination'
    },
    
    process_quality: {
      analyzer: 'Root cause analysis and investigation',
      qa: 'Quality assurance and testing',
      refactorer: 'Code quality and technical debt management', 
      devops: 'Infrastructure and deployment automation'
    },
    
    knowledge_communication: {
      mentor: 'Educational guidance and knowledge transfer',
      scribe: 'Professional documentation and localization'
    }
  };
  
  // 能力评估维度
  capability_dimensions: {
    domain_expertise: 'Specialized knowledge depth (0-1.0)',
    collaboration_skill: 'Inter-agent cooperation ability (0-1.0)', 
    decision_confidence: 'Decision-making reliability (0-1.0)',
    adaptability: 'Context adaptation capability (0-1.0)',
    communication_clarity: 'Output clarity and usefulness (0-1.0)'
  };
  
  // 协作模式
  collaboration_patterns: {
    primary_lead: 'Agent leads the entire operation',
    consultant_support: 'Agent provides specialized input',
    validator_review: 'Agent validates decisions and outputs',
    coordinator_orchestrate: 'Agent manages multi-agent workflows'
  };
}

Agent专业化特征

typescript
class AgentSpecializationProfiles {
  // 技术架构专家
  static readonly ARCHITECT = {
    domain_focus: ['system_design', 'scalability', 'long_term_maintainability'],
    decision_framework: {
      priorities: 'Long-term maintainability > Scalability > Performance > Short-term gains',
      principles: ['System thinking', 'Future-proofing', 'Dependency management'],
      optimization_targets: ['architectural_complexity', 'technical_debt', 'system_cohesion']
    },
    collaboration_preferences: {
      leads_with: ['performance', 'security'],
      consults_from: ['frontend', 'backend', 'devops'], 
      validates_through: ['analyzer', 'qa']
    },
    mcp_server_preferences: {
      primary: 'Sequential', // For comprehensive architectural analysis
      secondary: 'Context7', // For architectural patterns and best practices
      avoids: 'Magic' // Focuses on architecture rather than generation
    },
    auto_activation_triggers: {
      keywords: ['architecture', 'design', 'scalability', 'system'],
      complexity_threshold: 0.7,
      multi_module_involvement: true,
      estimation_with_architecture: true
    }
  };
  
  // 前端UX专家
  static readonly FRONTEND = {
    domain_focus: ['user_experience', 'accessibility', 'performance_optimization'],
    decision_framework: {
      priorities: 'User needs > Accessibility > Performance > Technical elegance',
      principles: ['User-centered design', 'Accessibility by default', 'Performance awareness'],
      performance_budgets: {
        load_time: '3G: <3s, WiFi: <1s',
        bundle_size: 'Initial: <500KB, Total: <2MB', 
        accessibility: 'WCAG 2.1 AA minimum (90%+)',
        core_web_vitals: 'LCP <2.5s, FID <100ms, CLS <0.1'
      }
    },
    collaboration_preferences: {
      leads_with: ['qa'], // For E2E testing
      consults_from: ['performance', 'security'],
      validates_through: ['mentor'] // For user experience validation
    },
    mcp_server_preferences: {
      primary: 'Magic', // For modern UI component generation  
      secondary: 'Playwright', // For user interaction testing
      tertiary: 'Context7' // For frontend patterns and frameworks
    },
    auto_activation_triggers: {
      keywords: ['component', 'responsive', 'accessibility', 'ui', 'ux'],
      ui_component_requests: true,
      design_system_work: true,
      user_experience_mentions: true
    }
  };
  
  // 后端可靠性专家
  static readonly BACKEND = {
    domain_focus: ['reliability', 'security', 'data_integrity', 'api_design'],
    decision_framework: {
      priorities: 'Reliability > Security > Performance > Features > Convenience',
      principles: ['Reliability first', 'Security by default', 'Data integrity'],
      reliability_budgets: {
        uptime: '99.9% (8.7 hours downtime/year)',
        error_rate: '<0.1% for critical operations',
        response_time: '<200ms for API calls',
        recovery_time: '<5 minutes for critical services'
      }
    },
    collaboration_preferences: {
      leads_with: ['security', 'devops'],
      consults_from: ['performance', 'architect'],
      validates_through: ['qa', 'analyzer']
    },
    mcp_server_preferences: {
      primary: 'Context7', // For backend patterns and frameworks
      secondary: 'Sequential', // For complex backend system analysis  
      avoids: 'Magic' // Focuses on backend logic rather than UI
    },
    auto_activation_triggers: {
      keywords: ['api', 'database', 'service', 'reliability', 'server'],
      server_side_development: true,
      infrastructure_work: true,
      security_data_integrity: true
    }
  };
  
  // 安全威胁专家
  static readonly SECURITY = {
    domain_focus: ['threat_modeling', 'vulnerability_assessment', 'compliance'],
    decision_framework: {
      priorities: 'Security > Compliance > Reliability > Performance > Convenience',
      principles: ['Security by default', 'Zero trust architecture', 'Defense in depth'],
      threat_assessment_matrix: {
        threat_levels: 'Critical (immediate), High (24h), Medium (7d), Low (30d)',
        attack_surface: 'External (100%), Internal (70%), Isolated (40%)',
        data_sensitivity: 'PII/Financial (100%), Business (80%), Public (30%)',
        compliance_requirements: 'Regulatory (100%), Industry (80%), Internal (60%)'
      }
    },
    collaboration_preferences: {
      leads_with: ['backend', 'devops'],
      consults_from: ['architect', 'analyzer'],
      validates_through: ['qa', 'mentor']
    },
    mcp_server_preferences: {
      primary: 'Sequential', // For threat modeling and security analysis
      secondary: 'Context7', // For security patterns and compliance standards
      avoids: 'Magic' // UI generation doesn't align with security analysis
    },
    auto_activation_triggers: {
      keywords: ['vulnerability', 'threat', 'compliance', 'security', 'auth'],
      security_scans: true,
      assessment_work: true,
      authentication_authorization: true
    }
  };
}

激活决策引擎

多因素评分系统

typescript
class AgentActivationEngine {
  private readonly scoringFactors = {
    keyword_matching: 0.3,      // 关键词匹配权重
    context_analysis: 0.4,      // 上下文分析权重  
    user_history: 0.2,          // 用户历史权重
    performance_metrics: 0.1    // 性能指标权重
  };
  
  private readonly activationThreshold = 0.7;
  private readonly userBehaviorTracker = new UserBehaviorTracker();
  private readonly performanceMonitor = new AgentPerformanceMonitor();
  
  async determineAgentActivation(
    request: UserRequest,
    context: ExecutionContext
  ): Promise<AgentActivationDecision> {
    
    // 1. 为每个Agent计算激活分数
    const agentScores = await this.calculateAgentScores(request, context);
    
    // 2. 应用激活阈值过滤
    const candidateAgents = this.filterByCandidateThreshold(agentScores);
    
    // 3. 协作模式决策
    const collaborationPlan = await this.designCollaborationPlan(candidateAgents, context);
    
    // 4. 资源分配优化
    const resourceAllocation = this.optimizeResourceAllocation(collaborationPlan);
    
    return {
      activatedAgents: collaborationPlan.agents,
      collaborationMode: collaborationPlan.mode,
      resourceAllocation,
      confidence: this.calculateOverallConfidence(agentScores),
      reasoning: this.generateActivationReasoning(agentScores, collaborationPlan)
    };
  }
  
  private async calculateAgentScores(
    request: UserRequest,
    context: ExecutionContext
  ): Promise<Map<AgentType, AgentScore>> {
    
    const scores = new Map<AgentType, AgentScore>();
    
    for (const agentType of this.getAllAgentTypes()) {
      // 并行计算各评分因子
      const [keywordScore, contextScore, historyScore, performanceScore] = await Promise.all([
        this.calculateKeywordScore(request, agentType),
        this.calculateContextScore(request, context, agentType), 
        this.calculateHistoryScore(context.userId, agentType),
        this.calculatePerformanceScore(agentType)
      ]);
      
      // 加权综合评分
      const totalScore = 
        keywordScore * this.scoringFactors.keyword_matching +
        contextScore * this.scoringFactors.context_analysis +
        historyScore * this.scoringFactors.user_history + 
        performanceScore * this.scoringFactors.performance_metrics;
      
      scores.set(agentType, {
        total: totalScore,
        breakdown: { keywordScore, contextScore, historyScore, performanceScore },
        confidence: this.calculateScoreConfidence(keywordScore, contextScore),
        reasoning: this.generateScoreReasoning(agentType, {
          keywordScore, contextScore, historyScore, performanceScore
        })
      });
    }
    
    return scores;
  }
  
  private async calculateKeywordScore(
    request: UserRequest,
    agentType: AgentType
  ): Promise<number> {
    
    const agentKeywords = this.getAgentKeywords(agentType);
    const requestText = this.extractTextFromRequest(request);
    
    // 1. 直接关键词匹配
    const directMatches = this.findDirectMatches(requestText, agentKeywords.direct);
    const directScore = Math.min(directMatches.length * 0.2, 0.8);
    
    // 2. 语义相关性匹配
    const semanticScore = await this.calculateSemanticSimilarity(requestText, agentKeywords.semantic);
    
    // 3. 上下文线索匹配
    const contextualScore = this.findContextualClues(requestText, agentKeywords.contextual);
    
    // 4. 综合评分(直接匹配权重最高)
    return Math.min(directScore * 0.6 + semanticScore * 0.3 + contextualScore * 0.1, 1.0);
  }
  
  private async calculateContextScore(
    request: UserRequest,
    context: ExecutionContext,
    agentType: AgentType
  ): Promise<number> {
    
    let contextScore = 0;
    
    // 1. 项目类型匹配
    const projectTypeScore = this.assessProjectTypeAlignment(context.projectType, agentType);
    contextScore += projectTypeScore * 0.3;
    
    // 2. 任务复杂度匹配
    const complexityScore = this.assessComplexityAlignment(context.complexity, agentType);
    contextScore += complexityScore * 0.25;
    
    // 3. 技术栈匹配
    const techStackScore = this.assessTechStackAlignment(context.techStack, agentType);
    contextScore += techStackScore * 0.2;
    
    // 4. 当前阶段匹配
    const phaseScore = this.assessProjectPhaseAlignment(context.projectPhase, agentType);
    contextScore += phaseScore * 0.15;
    
    // 5. 紧急程度匹配
    const urgencyScore = this.assessUrgencyAlignment(context.urgency, agentType);
    contextScore += urgencyScore * 0.1;
    
    return Math.min(contextScore, 1.0);
  }
  
  private async calculateHistoryScore(
    userId: string,
    agentType: AgentType
  ): Promise<number> {
    
    const userHistory = await this.userBehaviorTracker.getUserHistory(userId);
    
    // 1. Agent使用频率
    const usageFrequency = userHistory.getAgentUsageFrequency(agentType);
    const frequencyScore = Math.min(usageFrequency * 2, 0.4);
    
    // 2. 用户满意度
    const satisfactionScore = userHistory.getAgentSatisfactionScore(agentType);
    const satisfactionWeight = satisfactionScore * 0.3;
    
    // 3. 成功协作历史
    const collaborationScore = userHistory.getCollaborationSuccessRate(agentType);
    const collaborationWeight = collaborationScore * 0.2;
    
    // 4. 最近使用偏好
    const recentPreference = userHistory.getRecentPreferenceScore(agentType);
    const recentWeight = recentPreference * 0.1;
    
    return frequencyScore + satisfactionWeight + collaborationWeight + recentWeight;
  }
  
  private calculatePerformanceScore(agentType: AgentType): number {
    const performanceData = this.performanceMonitor.getAgentPerformance(agentType);
    
    // 1. 响应时间评分
    const responseTimeScore = this.normalizeResponseTime(performanceData.averageResponseTime);
    
    // 2. 成功率评分  
    const successRateScore = performanceData.successRate;
    
    // 3. 资源效率评分
    const efficiencyScore = this.calculateResourceEfficiency(performanceData.resourceUsage);
    
    // 4. 用户反馈评分
    const feedbackScore = performanceData.userFeedbackScore;
    
    return (responseTimeScore * 0.3 + successRateScore * 0.4 + efficiencyScore * 0.2 + feedbackScore * 0.1);
  }
  
  private async designCollaborationPlan(
    candidateAgents: AgentScore[],
    context: ExecutionContext
  ): Promise<CollaborationPlan> {
    
    if (candidateAgents.length === 0) {
      return this.createDefaultCollaborationPlan(context);
    }
    
    if (candidateAgents.length === 1) {
      return this.createSingleAgentPlan(candidateAgents[0]);
    }
    
    // 多Agent协作规划
    return this.createMultiAgentPlan(candidateAgents, context);
  }
  
  private createMultiAgentPlan(
    candidateAgents: AgentScore[],
    context: ExecutionContext
  ): CollaborationPlan {
    
    // 1. 按分数排序
    const sortedAgents = candidateAgents.sort((a, b) => b.total - a.total);
    
    // 2. 选择主导Agent
    const primaryAgent = sortedAgents[0];
    
    // 3. 选择辅助Agent(基于协作兼容性)
    const supportingAgents = this.selectSupportingAgents(primaryAgent, sortedAgents.slice(1));
    
    // 4. 确定协作模式
    const collaborationMode = this.determineCollaborationMode(primaryAgent, supportingAgents, context);
    
    return {
      mode: collaborationMode,
      agents: [
        { agent: primaryAgent.agentType, role: 'primary', allocation: 0.6 },
        ...supportingAgents.map(agent => ({
          agent: agent.agentType, 
          role: this.determineAgentRole(agent, primaryAgent),
          allocation: this.calculateAgentAllocation(agent, supportingAgents.length)
        }))
      ],
      coordination: this.designCoordinationStrategy(primaryAgent, supportingAgents),
      expectedOutcome: this.predictCollaborationOutcome(primaryAgent, supportingAgents)
    };
  }
  
  private selectSupportingAgents(
    primaryAgent: AgentScore,
    candidates: AgentScore[]
  ): AgentScore[] {
    
    const supportingAgents: AgentScore[] = [];
    const maxSupportingAgents = 3; // 限制辅助Agent数量
    
    for (const candidate of candidates) {
      if (supportingAgents.length >= maxSupportingAgents) break;
      
      // 检查协作兼容性
      const compatibility = this.assessCollaborationCompatibility(primaryAgent, candidate);
      if (compatibility > 0.5) {
        supportingAgents.push(candidate);
      }
    }
    
    return supportingAgents;
  }
  
  private assessCollaborationCompatibility(
    primaryAgent: AgentScore,
    candidateAgent: AgentScore
  ): number {
    
    // 1. 领域互补性
    const domainComplementarity = this.calculateDomainComplementarity(
      primaryAgent.agentType, 
      candidateAgent.agentType
    );
    
    // 2. 协作历史
    const collaborationHistory = this.getCollaborationHistory(
      primaryAgent.agentType,
      candidateAgent.agentType
    );
    
    // 3. 冲突概率
    const conflictProbability = this.assessConflictProbability(
      primaryAgent.agentType,
      candidateAgent.agentType
    );
    
    // 4. 资源竞争
    const resourceCompetition = this.assessResourceCompetition(
      primaryAgent.agentType,
      candidateAgent.agentType
    );
    
    return (
      domainComplementarity * 0.4 +
      collaborationHistory * 0.3 -
      conflictProbability * 0.2 -
      resourceCompetition * 0.1
    );
  }
}

动态激活策略

typescript
class DynamicActivationStrategies {
  // 场景驱动激活
  static readonly SCENARIO_DRIVEN = {
    performance_issues: {
      triggers: ['slow_response', 'high_resource_usage', 'bottleneck_detected'],
      primary_agent: 'performance',
      supporting_agents: ['analyzer', 'backend'],
      confidence_boost: 0.2
    },
    
    security_concerns: {
      triggers: ['vulnerability_mention', 'auth_failure', 'compliance_gap'],
      primary_agent: 'security',
      supporting_agents: ['backend', 'devops'],
      confidence_boost: 0.3
    },
    
    ui_ux_tasks: {
      triggers: ['component_creation', 'responsive_design', 'accessibility'],
      primary_agent: 'frontend',
      supporting_agents: ['qa', 'mentor'],
      confidence_boost: 0.25
    },
    
    complex_debugging: {
      triggers: ['multi_component_failure', 'root_cause_investigation'],
      primary_agent: 'analyzer',
      supporting_agents: ['backend', 'frontend', 'performance'],
      confidence_boost: 0.15
    },
    
    documentation_tasks: {
      triggers: ['readme_creation', 'api_documentation', 'guide_writing'],
      primary_agent: 'scribe',
      supporting_agents: ['mentor', 'architect'],
      confidence_boost: 0.2
    }
  };
  
  // 上下文自动激活
  static readonly CONTEXT_AUTO_ACTIVATION = {
    project_phase_mapping: {
      planning: ['architect', 'analyzer'],
      development: ['frontend', 'backend', 'qa'],
      testing: ['qa', 'performance', 'security'],
      deployment: ['devops', 'security'],
      maintenance: ['analyzer', 'performance', 'refactorer']
    },
    
    complexity_threshold_activation: {
      high_complexity: {
        threshold: 0.8,
        mandatory_agents: ['architect', 'analyzer'],
        recommended_agents: ['security', 'performance']
      },
      medium_complexity: {
        threshold: 0.5,
        mandatory_agents: [],
        recommended_agents: ['qa', 'refactorer']
      }
    },
    
    technology_stack_activation: {
      frontend_frameworks: {
        patterns: ['react', 'vue', 'angular', 'svelte'],
        agents: ['frontend', 'qa'],
        confidence_modifier: 0.3
      },
      backend_frameworks: {
        patterns: ['express', 'fastapi', 'spring', 'django'],
        agents: ['backend', 'security'],
        confidence_modifier: 0.3
      },
      database_systems: {
        patterns: ['postgresql', 'mongodb', 'redis', 'elasticsearch'],
        agents: ['backend', 'performance'],
        confidence_modifier: 0.2
      }
    }
  };
  
  // 学习式激活
  static readonly LEARNING_BASED_ACTIVATION = {
    success_pattern_learning: {
      track_metrics: ['task_completion_rate', 'user_satisfaction', 'execution_time'],
      adaptation_rate: 0.1,
      confidence_threshold: 0.8
    },
    
    failure_pattern_avoidance: {
      track_failures: ['agent_conflicts', 'resource_contention', 'poor_outcomes'],
      penalty_factor: 0.2,
      recovery_time: '7_days'
    },
    
    user_preference_adaptation: {
      preference_weight: 0.3,
      learning_window: '30_days',
      min_interactions: 10
    }
  };
}

协作模式体系

协作架构模式

typescript
interface CollaborationArchitecture {
  // 核心协作模式
  collaboration_modes: {
    hierarchical: {
      structure: 'Primary agent leads, others support',
      decision_flow: 'Top-down with specialized input',
      conflict_resolution: 'Primary agent has final authority',
      use_cases: ['Complex system design', 'Critical security decisions']
    },
    
    collaborative: {
      structure: 'Equal partners with specialized roles',
      decision_flow: 'Consensus-based with domain expertise',
      conflict_resolution: 'Negotiation and compromise',
      use_cases: ['Multi-domain problems', 'Cross-functional features']
    },
    
    consultative: {
      structure: 'One primary agent, others as consultants',
      decision_flow: 'Primary decides after gathering input',
      conflict_resolution: 'Primary weighs expert opinions',
      use_cases: ['Domain-specific tasks with dependencies']
    },
    
    pipeline: {
      structure: 'Sequential hand-offs between agents',
      decision_flow: 'Stage-gate progression',
      conflict_resolution: 'Stage-specific authority',
      use_cases: ['Development lifecycle workflows']
    }
  };
  
  // 角色定义
  agent_roles: {
    primary: 'Leads overall execution and makes final decisions',
    consultant: 'Provides specialized expertise and recommendations', 
    validator: 'Reviews decisions and validates quality',
    coordinator: 'Manages workflow and resolves conflicts'
  };
  
  // 协作协议
  collaboration_protocols: {
    communication: 'Structured message passing with semantic annotations',
    decision_making: 'Evidence-based with confidence scoring',
    conflict_resolution: 'Escalation hierarchy with fallback mechanisms',
    knowledge_sharing: 'Centralized context with incremental updates'
  };
}

class CollaborationOrchestrator {
  private communicationBus = new AgentCommunicationBus();
  private decisionManager = new CollaborativeDecisionManager();
  private conflictResolver = new AgentConflictResolver();
  private knowledgeBase = new SharedKnowledgeBase();
  
  async orchestrateCollaboration(
    collaborationPlan: CollaborationPlan,
    task: CollaborativeTask
  ): Promise<CollaborationResult> {
    
    // 1. 协作环境初始化
    const collaborationContext = await this.initializeCollaborationContext(collaborationPlan, task);
    
    // 2. Agent角色分配和激活
    const activeAgents = await this.activateAgents(collaborationPlan.agents);
    
    // 3. 共享知识基础建立
    await this.establishSharedKnowledge(activeAgents, task);
    
    // 4. 协作执行
    const executionResult = await this.executeCollaborativeTask(
      activeAgents,
      task,
      collaborationContext
    );
    
    // 5. 结果整合和验证
    const integratedResult = await this.integrateAndValidateResults(executionResult);
    
    // 6. 协作效果评估
    const performanceMetrics = this.evaluateCollaborationPerformance(executionResult);
    
    return {
      task_result: integratedResult,
      collaboration_metrics: performanceMetrics,
      agent_contributions: this.analyzeAgentContributions(executionResult),
      lessons_learned: this.extractLessonsLearned(executionResult)
    };
  }
  
  private async executeCollaborativeTask(
    agents: ActiveAgent[],
    task: CollaborativeTask,
    context: CollaborationContext
  ): Promise<CollaborationExecutionResult> {
    
    const executionPlan = this.createCollaborationExecutionPlan(agents, task);
    const results: AgentTaskResult[] = [];
    const communicationLog: AgentMessage[] = [];
    
    switch (context.mode) {
      case 'hierarchical':
        return this.executeHierarchicalCollaboration(agents, task, context);
      case 'collaborative':
        return this.executeCollaborativeMode(agents, task, context);
      case 'consultative':
        return this.executeConsultativeMode(agents, task, context);
      case 'pipeline':
        return this.executePipelineMode(agents, task, context);
      default:
        throw new Error(`Unknown collaboration mode: ${context.mode}`);
    }
  }
  
  private async executeHierarchicalCollaboration(
    agents: ActiveAgent[],
    task: CollaborativeTask,
    context: CollaborationContext
  ): Promise<CollaborationExecutionResult> {
    
    const primaryAgent = agents.find(a => a.role === 'primary');
    const supportingAgents = agents.filter(a => a.role !== 'primary');
    
    // 1. 主导Agent任务分解
    const taskBreakdown = await primaryAgent.agent.decomposeTask(task);
    
    // 2. 子任务分配给支持Agent
    const subtaskAssignments = this.assignSubtasks(taskBreakdown.subtasks, supportingAgents);
    
    // 3. 并行执行子任务
    const subtaskResults = await Promise.all(
      subtaskAssignments.map(assignment => 
        this.executeSubtaskWithAgent(assignment.subtask, assignment.agent, context)
      )
    );
    
    // 4. 主导Agent整合结果
    const integratedResult = await primaryAgent.agent.integrateResults(
      subtaskResults,
      task.originalRequirements
    );
    
    // 5. 支持Agent验证和反馈
    const validationResults = await this.validateResultsWithSupportingAgents(
      integratedResult,
      supportingAgents
    );
    
    // 6. 最终决策
    const finalResult = await primaryAgent.agent.makeFinalDecision(
      integratedResult,
      validationResults
    );
    
    return {
      mode: 'hierarchical',
      primary_result: finalResult,
      supporting_results: subtaskResults,
      validation_results: validationResults,
      decision_trail: this.extractDecisionTrail(primaryAgent, supportingAgents),
      communication_efficiency: this.calculateCommunicationEfficiency(context)
    };
  }
  
  private async executeCollaborativeMode(
    agents: ActiveAgent[],
    task: CollaborativeTask,
    context: CollaborationContext
  ): Promise<CollaborationExecutionResult> {
    
    // 1. 共同任务理解
    const sharedUnderstanding = await this.buildSharedTaskUnderstanding(agents, task);
    
    // 2. 协作策略制定
    const collaborationStrategy = await this.developCollaborationStrategy(agents, sharedUnderstanding);
    
    // 3. 并行工作和持续沟通
    const parallelWorkResults = await this.executeParallelWork(agents, collaborationStrategy);
    
    // 4. 渐进式整合
    const progressiveIntegration = await this.performProgressiveIntegration(parallelWorkResults);
    
    // 5. 共识决策
    const consensusResult = await this.reachConsensusDecision(agents, progressiveIntegration);
    
    return {
      mode: 'collaborative',
      consensus_result: consensusResult,
      individual_contributions: parallelWorkResults,
      integration_steps: progressiveIntegration,
      consensus_process: this.documentConsensusProcess(agents),
      collaboration_quality: this.assessCollaborationQuality(parallelWorkResults)
    };
  }
  
  private async buildSharedTaskUnderstanding(
    agents: ActiveAgent[],
    task: CollaborativeTask
  ): Promise<SharedUnderstanding> {
    
    // 1. 每个Agent独立分析任务
    const individualAnalyses = await Promise.all(
      agents.map(agent => agent.agent.analyzeTask(task))
    );
    
    // 2. 分析结果对比和讨论
    const analysisComparison = this.compareAnalyses(individualAnalyses);
    
    // 3. 差异协调
    const reconciliation = await this.reconcileAnalysisDifferences(
      agents,
      analysisComparison.differences
    );
    
    // 4. 共享理解文档
    const sharedUnderstanding = this.synthesizeSharedUnderstanding(
      individualAnalyses,
      reconciliation
    );
    
    // 5. 确认和提交
    await this.confirmSharedUnderstanding(agents, sharedUnderstanding);
    
    return sharedUnderstanding;
  }
  
  private async executeParallelWork(
    agents: ActiveAgent[],
    strategy: CollaborationStrategy
  ): Promise<Map<AgentType, AgentWorkResult>> {
    
    const workResults = new Map<AgentType, AgentWorkResult>();
    const communicationChannels = this.setupCommunicationChannels(agents);
    
    // 启动并行工作
    const workPromises = agents.map(async (agent) => {
      const workScope = strategy.getAgentWorkScope(agent.type);
      const workResult = await this.executeAgentWork(
        agent,
        workScope,
        communicationChannels.getChannelFor(agent.type)
      );
      
      workResults.set(agent.type, workResult);
      return workResult;
    });
    
    // 等待所有并行工作完成
    await Promise.all(workPromises);
    
    return workResults;
  }
  
  private async executeAgentWork(
    agent: ActiveAgent,
    workScope: WorkScope,
    communicationChannel: CommunicationChannel
  ): Promise<AgentWorkResult> {
    
    const workResult: AgentWorkResult = {
      agent_type: agent.type,
      work_scope: workScope,
      progress_updates: [],
      intermediate_results: [],
      final_result: null,
      communication_log: []
    };
    
    // 监听其他Agent的进展
    communicationChannel.onMessage((message) => {
      workResult.communication_log.push(message);
      
      // 根据消息调整工作策略
      if (this.shouldAdjustWork(message, workScope)) {
        this.adjustAgentWork(agent, workScope, message);
      }
    });
    
    // 执行工作并定期更新
    const workMonitor = setInterval(() => {
      const progress = agent.agent.getWorkProgress();
      workResult.progress_updates.push(progress);
      
      // 广播进展信息
      communicationChannel.broadcast({
        from: agent.type,
        type: 'progress_update',
        content: progress,
        timestamp: Date.now()
      });
    }, 5000); // 每5秒更新一次
    
    try {
      // 执行实际工作
      const finalResult = await agent.agent.executeWork(workScope);
      workResult.final_result = finalResult;
      
      // 广播完成信息
      communicationChannel.broadcast({
        from: agent.type,
        type: 'work_completed',
        content: finalResult,
        timestamp: Date.now()
      });
      
    } finally {
      clearInterval(workMonitor);
    }
    
    return workResult;
  }
}

智能冲突解决

typescript
class AgentConflictResolver {
  private conflictDetector = new ConflictDetectionSystem();
  private resolutionStrategies = new Map<ConflictType, ResolutionStrategy>();
  private escalationManager = new ConflictEscalationManager();
  
  async resolveConflicts(
    agents: ActiveAgent[],
    conflictContext: ConflictContext
  ): Promise<ConflictResolutionResult> {
    
    // 1. 冲突检测和分类
    const detectedConflicts = await this.conflictDetector.detectConflicts(agents, conflictContext);
    
    if (detectedConflicts.length === 0) {
      return { status: 'no_conflicts', resolutions: [] };
    }
    
    // 2. 冲突优先级排序
    const prioritizedConflicts = this.prioritizeConflicts(detectedConflicts);
    
    // 3. 逐个解决冲突
    const resolutions: ConflictResolution[] = [];
    
    for (const conflict of prioritizedConflicts) {
      const resolution = await this.resolveIndividualConflict(conflict, agents);
      resolutions.push(resolution);
      
      // 如果解决失败,考虑升级
      if (!resolution.success && conflict.severity === 'high') {
        const escalation = await this.escalationManager.escalateConflict(conflict, resolution);
        resolutions.push(escalation);
      }
    }
    
    return {
      status: 'resolved',
      resolutions,
      remaining_conflicts: this.identifyRemainingConflicts(resolutions),
      resolution_quality: this.assessResolutionQuality(resolutions)
    };
  }
  
  private async resolveIndividualConflict(
    conflict: DetectedConflict,
    agents: ActiveAgent[]
  ): Promise<ConflictResolution> {
    
    const strategy = this.selectResolutionStrategy(conflict);
    
    switch (strategy.type) {
      case 'PRIORITY_BASED':
        return this.resolvePriorityBased(conflict, agents);
      case 'NEGOTIATION':
        return this.resolveByNegotiation(conflict, agents);
      case 'COMPROMISE':
        return this.resolveByCompromise(conflict, agents);
      case 'DOMAIN_EXPERTISE':
        return this.resolveByDomainExpertise(conflict, agents);
      case 'USER_DECISION':
        return this.resolveByUserDecision(conflict, agents);
      default:
        return this.resolveByDefaultStrategy(conflict, agents);
    }
  }
  
  private async resolvePriorityBased(
    conflict: DetectedConflict,
    agents: ActiveAgent[]
  ): Promise<ConflictResolution> {
    
    // 基于Agent优先级层次解决冲突
    const agentPriorities = this.getAgentPriorityMatrix();
    const conflictingAgents = conflict.involvedAgents;
    
    // 找到最高优先级的Agent
    const highestPriorityAgent = conflictingAgents.reduce((highest, current) => {
      return agentPriorities.get(current.type) > agentPriorities.get(highest.type) 
        ? current : highest;
    });
    
    // 应用最高优先级Agent的决策
    const resolution = await highestPriorityAgent.agent.resolveConflict(conflict);
    
    // 通知其他Agent接受决策
    await this.notifyConflictResolution(conflictingAgents, resolution, 'priority_override');
    
    return {
      conflict_id: conflict.id,
      strategy: 'PRIORITY_BASED',
      winning_agent: highestPriorityAgent.type,
      resolution: resolution,
      acceptance_rate: await this.measureAcceptanceRate(conflictingAgents, resolution),
      success: true
    };
  }
  
  private async resolveByNegotiation(
    conflict: DetectedConflict,
    agents: ActiveAgent[]
  ): Promise<ConflictResolution> {
    
    const conflictingAgents = conflict.involvedAgents;
    const maxNegotiationRounds = 3;
    let currentRound = 0;
    
    let proposals = await this.gatherInitialProposals(conflictingAgents, conflict);
    
    while (currentRound < maxNegotiationRounds) {
      // 1. 分析提案差异
      const proposalAnalysis = this.analyzeProposalDifferences(proposals);
      
      // 2. 寻找妥协空间
      const compromiseSpace = this.identifyCompromiseSpace(proposalAnalysis);
      
      // 3. 如果找到可接受的妥协
      if (compromiseSpace.viability > 0.7) {
        const negotiatedSolution = this.synthesizeCompromiseSolution(compromiseSpace);
        const acceptance = await this.checkProposalAcceptance(conflictingAgents, negotiatedSolution);
        
        if (acceptance.unanimous) {
          return {
            conflict_id: conflict.id,
            strategy: 'NEGOTIATION',
            resolution: negotiatedSolution,
            negotiation_rounds: currentRound + 1,
            acceptance_rate: 1.0,
            success: true
          };
        }
      }
      
      // 4. 生成下一轮提案
      proposals = await this.generateNextRoundProposals(conflictingAgents, proposalAnalysis);
      currentRound++;
    }
    
    // 协商失败,转为其他策略
    return this.resolveByCompromise(conflict, agents);
  }
  
  private async resolveByDomainExpertise(
    conflict: DetectedConflict,
    agents: ActiveAgent[]
  ): Promise<ConflictResolution> {
    
    // 基于领域专业知识解决冲突
    const domainRelevance = this.assessDomainRelevance(conflict, agents);
    
    // 选择最相关的领域专家
    const domainExpert = agents.reduce((expert, current) => {
      return domainRelevance.get(current.type) > domainRelevance.get(expert.type)
        ? current : expert;
    });
    
    // 专家决策
    const expertDecision = await domainExpert.agent.makeExpertDecision(conflict);
    
    // 验证决策的技术合理性
    const technicalValidation = await this.validateTechnicalSoundness(expertDecision);
    
    if (technicalValidation.valid) {
      return {
        conflict_id: conflict.id,
        strategy: 'DOMAIN_EXPERTISE',
        expert_agent: domainExpert.type,
        resolution: expertDecision,
        technical_validation: technicalValidation,
        success: true
      };
    } else {
      // 技术验证失败,升级处理
      return this.escalateForTechnicalReview(conflict, expertDecision, technicalValidation);
    }
  }
  
  private getAgentPriorityMatrix(): Map<AgentType, number> {
    // Agent优先级矩阵(基于决策影响范围和专业性)
    return new Map([
      ['architect', 100],     // 最高优先级:系统架构决策
      ['security', 95],       // 安全决策优先级极高
      ['performance', 90],    // 性能决策影响全局
      ['backend', 85],        // 后端稳定性关键
      ['frontend', 80],       // 用户体验重要
      ['analyzer', 75],       // 分析判断重要
      ['qa', 70],            // 质量保证
      ['devops', 65],        // 运维影响
      ['refactorer', 60],    // 代码质量
      ['mentor', 55],        // 知识传递
      ['scribe', 50]         // 文档记录
    ]);
  }
}

智能路由机制

上下文感知路由

typescript
class ContextAwareRouting {
  private contextAnalyzer = new ExecutionContextAnalyzer();
  private routingPolicyEngine = new RoutingPolicyEngine();
  private performancePredictor = new RoutingPerformancePredictor();
  
  async routeRequest(
    request: AgentRequest,
    availableAgents: AgentPool
  ): Promise<RoutingDecision> {
    
    // 1. 上下文深度分析
    const contextAnalysis = await this.contextAnalyzer.analyzeRequestContext(request);
    
    // 2. 路由策略生成
    const routingStrategies = await this.generateRoutingStrategies(contextAnalysis, availableAgents);
    
    // 3. 性能预测评估
    const performancePredictions = await this.performancePredictor.predictRoutingPerformance(routingStrategies);
    
    // 4. 最优路由选择
    const optimalRouting = this.selectOptimalRouting(routingStrategies, performancePredictions);
    
    // 5. 路由执行规划
    const executionPlan = await this.planRoutingExecution(optimalRouting, contextAnalysis);
    
    return {
      selected_routing: optimalRouting,
      execution_plan: executionPlan,
      confidence: this.calculateRoutingConfidence(optimalRouting, performancePredictions),
      fallback_options: this.generateFallbackOptions(routingStrategies),
      expected_performance: performancePredictions.get(optimalRouting.id)
    };
  }
  
  private async analyzeRequestContext(request: AgentRequest): Promise<ContextAnalysis> {
    return {
      // 技术上下文
      technical_context: {
        complexity_score: await this.assessTechnicalComplexity(request),
        domain_breadth: this.analyzeDomainBreadth(request),
        technology_stack: this.identifyTechnologyStack(request),
        integration_requirements: this.analyzeIntegrationNeeds(request)
      },
      
      // 业务上下文
      business_context: {
        urgency_level: this.determineUrgencyLevel(request),
        stakeholder_impact: this.assessStakeholderImpact(request),
        compliance_requirements: this.identifyComplianceNeeds(request),
        budget_constraints: this.analyzeBudgetConstraints(request)
      },
      
      // 执行上下文
      execution_context: {
        resource_availability: await this.checkResourceAvailability(),
        time_constraints: this.analyzeTimeConstraints(request),
        quality_requirements: this.determineQualityRequirements(request),
        risk_tolerance: this.assessRiskTolerance(request)
      },
      
      // 历史上下文
      historical_context: {
        similar_requests: await this.findSimilarHistoricalRequests(request),
        success_patterns: this.identifySuccessPatterns(request),
        failure_patterns: this.identifyFailurePatterns(request),
        performance_benchmarks: this.getPerformanceBenchmarks(request)
      }
    };
  }
  
  private async generateRoutingStrategies(
    contextAnalysis: ContextAnalysis,
    availableAgents: AgentPool
  ): Promise<RoutingStrategy[]> {
    
    const strategies: RoutingStrategy[] = [];
    
    // 1. 单Agent策略
    if (contextAnalysis.technical_context.complexity_score < 0.3) {
      strategies.push(...this.generateSingleAgentStrategies(contextAnalysis, availableAgents));
    }
    
    // 2. 协作Agent策略
    if (contextAnalysis.technical_context.complexity_score >= 0.3) {
      strategies.push(...this.generateCollaborativeStrategies(contextAnalysis, availableAgents));
    }
    
    // 3. 专业化策略
    if (contextAnalysis.technical_context.domain_breadth > 2) {
      strategies.push(...this.generateSpecializationStrategies(contextAnalysis, availableAgents));
    }
    
    // 4. 容错策略
    if (contextAnalysis.execution_context.risk_tolerance < 0.5) {
      strategies.push(...this.generateFaultTolerantStrategies(contextAnalysis, availableAgents));
    }
    
    return strategies;
  }
  
  private generateCollaborativeStrategies(
    contextAnalysis: ContextAnalysis,
    availableAgents: AgentPool
  ): RoutingStrategy[] {
    
    const strategies: RoutingStrategy[] = [];
    
    // 分析领域覆盖需求
    const requiredDomains = this.identifyRequiredDomains(contextAnalysis);
    
    // 生成领域覆盖策略
    for (const domainCombination of this.generateDomainCombinations(requiredDomains)) {
      const agentSelection = this.selectAgentsForDomains(domainCombination, availableAgents);
      
      if (agentSelection.coverage > 0.8) {
        strategies.push({
          id: `collaborative_${domainCombination.join('_')}`,
          type: 'collaborative',
          agents: agentSelection.agents,
          coordination_mode: this.determineCoordinationMode(agentSelection),
          expected_coverage: agentSelection.coverage,
          estimated_performance: this.estimateCollaborativePerformance(agentSelection)
        });
      }
    }
    
    return strategies;
  }
  
  private async predictRoutingPerformance(
    strategies: RoutingStrategy[]
  ): Promise<Map<string, PerformancePrediction>> {
    
    const predictions = new Map<string, PerformancePrediction>();
    
    for (const strategy of strategies) {
      const prediction = await this.predictIndividualStrategy(strategy);
      predictions.set(strategy.id, prediction);
    }
    
    return predictions;
  }
  
  private async predictIndividualStrategy(strategy: RoutingStrategy): Promise<PerformancePrediction> {
    // 基于历史数据和策略特征预测性能
    const historicalData = await this.getHistoricalPerformanceData(strategy);
    
    // 计算预期指标
    const expectedMetrics = {
      execution_time: this.predictExecutionTime(strategy, historicalData),
      success_rate: this.predictSuccessRate(strategy, historicalData),
      resource_usage: this.predictResourceUsage(strategy, historicalData),
      quality_score: this.predictQualityScore(strategy, historicalData),
      user_satisfaction: this.predictUserSatisfaction(strategy, historicalData)
    };
    
    // 计算预测置信度
    const confidence = this.calculatePredictionConfidence(strategy, historicalData);
    
    // 识别风险因素
    const riskFactors = this.identifyRiskFactors(strategy, historicalData);
    
    return {
      strategy_id: strategy.id,
      expected_metrics: expectedMetrics,
      confidence: confidence,
      risk_factors: riskFactors,
      recommendation: this.generatePerformanceRecommendation(expectedMetrics, riskFactors)
    };
  }
  
  private selectOptimalRouting(
    strategies: RoutingStrategy[],
    predictions: Map<string, PerformancePrediction>
  ): RoutingStrategy {
    
    // 多目标优化评分
    const scoredStrategies = strategies.map(strategy => {
      const prediction = predictions.get(strategy.id);
      
      // 加权评分计算
      const score = this.calculateOverallScore(strategy, prediction);
      
      return { strategy, prediction, score };
    });
    
    // 选择最高分策略
    const bestStrategy = scoredStrategies.reduce((best, current) => 
      current.score > best.score ? current : best
    );
    
    return bestStrategy.strategy;
  }
  
  private calculateOverallScore(
    strategy: RoutingStrategy,
    prediction: PerformancePrediction
  ): number {
    
    const weights = {
      execution_time: 0.25,
      success_rate: 0.30,
      resource_efficiency: 0.20,
      quality_score: 0.15,
      user_satisfaction: 0.10
    };
    
    // 归一化指标到0-1范围
    const normalizedMetrics = {
      execution_time: 1 - this.normalize(prediction.expected_metrics.execution_time, 0, 300000), // 5分钟最大
      success_rate: prediction.expected_metrics.success_rate,
      resource_efficiency: 1 - this.normalize(prediction.expected_metrics.resource_usage, 0, 1),
      quality_score: prediction.expected_metrics.quality_score,
      user_satisfaction: prediction.expected_metrics.user_satisfaction
    };
    
    // 加权综合评分
    const weightedScore = Object.entries(weights).reduce((score, [metric, weight]) => {
      return score + (normalizedMetrics[metric] * weight);
    }, 0);
    
    // 应用置信度和风险调整
    const confidenceAdjustment = prediction.confidence;
    const riskPenalty = this.calculateRiskPenalty(prediction.risk_factors);
    
    return weightedScore * confidenceAdjustment * (1 - riskPenalty);
  }
}

自适应路由优化

typescript
class AdaptiveRoutingOptimizer {
  private performanceTracker = new RoutingPerformanceTracker();
  private feedbackCollector = new RoutingFeedbackCollector();
  private optimizationEngine = new RoutingOptimizationEngine();
  
  async optimizeRouting(
    currentRouting: RoutingStrategy,
    executionResult: ExecutionResult
  ): Promise<RoutingOptimization> {
    
    // 1. 性能分析
    const performanceAnalysis = await this.analyzeRoutingPerformance(
      currentRouting,
      executionResult
    );
    
    // 2. 反馈收集
    const feedback = await this.collectRoutingFeedback(currentRouting, executionResult);
    
    // 3. 改进机会识别
    const improvementOpportunities = this.identifyImprovementOpportunities(
      performanceAnalysis,
      feedback
    );
    
    // 4. 优化策略生成
    const optimizationStrategies = await this.generateOptimizationStrategies(
      improvementOpportunities
    );
    
    // 5. 最佳优化选择
    const selectedOptimization = this.selectOptimalOptimization(optimizationStrategies);
    
    return {
      current_performance: performanceAnalysis,
      improvement_opportunities: improvementOpportunities,
      recommended_optimization: selectedOptimization,
      expected_improvement: this.calculateExpectedImprovement(selectedOptimization),
      implementation_plan: this.createOptimizationImplementationPlan(selectedOptimization)
    };
  }
  
  private async analyzeRoutingPerformance(
    routing: RoutingStrategy,
    result: ExecutionResult
  ): Promise<RoutingPerformanceAnalysis> {
    
    return {
      // 执行效率分析
      execution_efficiency: {
        actual_time: result.execution_time,
        predicted_time: routing.predicted_execution_time,
        efficiency_ratio: routing.predicted_execution_time / result.execution_time,
        bottlenecks: this.identifyExecutionBottlenecks(result)
      },
      
      // 资源利用分析
      resource_utilization: {
        cpu_usage: result.resource_metrics.cpu_usage,
        memory_usage: result.resource_metrics.memory_usage,
        agent_utilization: this.calculateAgentUtilization(routing, result),
        resource_waste: this.calculateResourceWaste(result)
      },
      
      // 协作效果分析
      collaboration_effectiveness: {
        communication_overhead: this.calculateCommunicationOverhead(result),
        coordination_efficiency: this.assessCoordinationEfficiency(result),
        conflict_rate: this.calculateConflictRate(result),
        synergy_score: this.calculateSynergyScore(result)
      },
      
      // 质量结果分析
      quality_outcomes: {
        result_completeness: this.assessResultCompleteness(result),
        result_accuracy: this.assessResultAccuracy(result),
        user_satisfaction: result.user_feedback?.satisfaction_score || 0,
        technical_quality: this.assessTechnicalQuality(result)
      }
    };
  }
  
  private identifyImprovementOpportunities(
    performanceAnalysis: RoutingPerformanceAnalysis,
    feedback: RoutingFeedback
  ): ImprovementOpportunity[] {
    
    const opportunities: ImprovementOpportunity[] = [];
    
    // 1. 执行效率改进
    if (performanceAnalysis.execution_efficiency.efficiency_ratio < 0.8) {
      opportunities.push({
        category: 'execution_efficiency',
        severity: 'high',
        description: 'Execution time significantly exceeds prediction',
        potential_improvement: 0.3,
        suggested_actions: [
          'Optimize agent selection',
          'Improve task decomposition',
          'Enhance parallel execution'
        ]
      });
    }
    
    // 2. 资源利用改进
    if (performanceAnalysis.resource_utilization.resource_waste > 0.2) {
      opportunities.push({
        category: 'resource_optimization',
        severity: 'medium',
        description: 'Significant resource waste detected',
        potential_improvement: 0.2,
        suggested_actions: [
          'Rightsize agent allocation',
          'Improve resource sharing',
          'Optimize execution scheduling'
        ]
      });
    }
    
    // 3. 协作效果改进
    if (performanceAnalysis.collaboration_effectiveness.synergy_score < 0.7) {
      opportunities.push({
        category: 'collaboration_enhancement',
        severity: 'medium',
        description: 'Suboptimal agent collaboration detected',
        potential_improvement: 0.25,
        suggested_actions: [
          'Improve agent compatibility matching',
          'Enhance communication protocols',
          'Optimize coordination strategies'
        ]
      });
    }
    
    // 4. 质量结果改进
    if (performanceAnalysis.quality_outcomes.user_satisfaction < 0.8) {
      opportunities.push({
        category: 'quality_enhancement',
        severity: 'high',
        description: 'User satisfaction below target',
        potential_improvement: 0.4,
        suggested_actions: [
          'Improve result validation',
          'Enhance user communication',
          'Optimize output formatting'
        ]
      });
    }
    
    return opportunities.sort((a, b) => b.potential_improvement - a.potential_improvement);
  }
  
  private async generateOptimizationStrategies(
    opportunities: ImprovementOpportunity[]
  ): Promise<OptimizationStrategy[]> {
    
    const strategies: OptimizationStrategy[] = [];
    
    for (const opportunity of opportunities) {
      switch (opportunity.category) {
        case 'execution_efficiency':
          strategies.push(...await this.generateExecutionOptimizations(opportunity));
          break;
        case 'resource_optimization':
          strategies.push(...await this.generateResourceOptimizations(opportunity));
          break;
        case 'collaboration_enhancement':
          strategies.push(...await this.generateCollaborationOptimizations(opportunity));
          break;
        case 'quality_enhancement':
          strategies.push(...await this.generateQualityOptimizations(opportunity));
          break;
      }
    }
    
    return strategies;
  }
  
  private async generateExecutionOptimizations(
    opportunity: ImprovementOpportunity
  ): Promise<OptimizationStrategy[]> {
    
    return [
      {
        id: 'agent_selection_optimization',
        category: opportunity.category,
        description: 'Optimize agent selection based on performance history',
        implementation: {
          type: 'agent_selection_tuning',
          parameters: {
            performance_weight_increase: 0.2,
            historical_data_window: '30_days',
            success_rate_threshold: 0.9
          }
        },
        expected_improvement: 0.15,
        implementation_cost: 'low',
        risk_level: 'low'
      },
      
      {
        id: 'parallel_execution_enhancement',
        category: opportunity.category,
        description: 'Enhance parallel execution capabilities',
        implementation: {
          type: 'parallel_optimization',
          parameters: {
            max_parallel_agents: 8,
            dependency_optimization: true,
            load_balancing: 'dynamic'
          }
        },
        expected_improvement: 0.25,
        implementation_cost: 'medium',
        risk_level: 'medium'
      }
    ];
  }
  
  private async generateCollaborationOptimizations(
    opportunity: ImprovementOpportunity
  ): Promise<OptimizationStrategy[]> {
    
    return [
      {
        id: 'communication_protocol_optimization',
        category: opportunity.category,
        description: 'Optimize inter-agent communication protocols',
        implementation: {
          type: 'communication_enhancement',
          parameters: {
            message_batching: true,
            priority_queuing: true,
            compression_threshold: 1024
          }
        },
        expected_improvement: 0.1,
        implementation_cost: 'low',
        risk_level: 'low'
      },
      
      {
        id: 'agent_compatibility_tuning',
        category: opportunity.category,
        description: 'Improve agent compatibility assessment',
        implementation: {
          type: 'compatibility_optimization',
          parameters: {
            compatibility_algorithm: 'enhanced_ml',
            learning_rate: 0.1,
            collaboration_history_weight: 0.3
          }
        },
        expected_improvement: 0.2,
        implementation_cost: 'medium',
        risk_level: 'low'
      }
    ];
  }
}

操作检查清单

Agent激活决策检查清单

激活前验证 (Pre-Activation Checklist)

  • [ ] 请求分析完整性

    • [ ] 已提取所有关键词和技术术语
    • [ ] 已识别项目类型和技术栈
    • [ ] 已评估任务复杂度 (0.0-1.0)
    • [ ] 已确定紧急程度和优先级
  • [ ] 上下文评估充分性

    • [ ] 已分析当前项目阶段
    • [ ] 已检查资源可用性
    • [ ] 已识别依赖关系和约束
    • [ ] 已获取用户历史偏好
  • [ ] Agent候选评分

    • [ ] 关键词匹配分数 ≥ 0.3
    • [ ] 上下文相关性 ≥ 0.4
    • [ ] 用户满意度历史 ≥ 0.7
    • [ ] Agent性能指标 ≥ 0.8
  • [ ] 激活决策验证

    • [ ] 总体置信度 ≥ 0.7
    • [ ] 激活原因可解释
    • [ ] 备选方案已准备
    • [ ] 资源分配合理

Agent协作模式检查清单

协作启动前 (Pre-Collaboration)

  • [ ] 协作必要性验证

    • [ ] 单Agent无法满足需求
    • [ ] 任务复杂度 ≥ 0.5
    • [ ] 涉及多个专业领域
    • [ ] 预期协作效益 > 协调成本
  • [ ] Agent选择验证

    • [ ] 领域覆盖完整性 ≥ 80%
    • [ ] Agent间兼容性 ≥ 0.6
    • [ ] 冲突概率 ≤ 0.3
    • [ ] 资源竞争程度 ≤ 0.2
  • [ ] 协作模式选择

    • [ ] 模式与任务特性匹配
    • [ ] 决策流程清晰明确
    • [ ] 角色职责界定明确
    • [ ] 冲突解决机制就绪

协作执行中 (During Collaboration)

  • [ ] 通信效率监控

    • [ ] 消息传递延迟 ≤ 100ms
    • [ ] 通信开销 ≤ 总资源10%
    • [ ] 信息同步完整性 ≥ 95%
    • [ ] 决策传达及时性
  • [ ] 进度协调检查

    • [ ] 各Agent进度同步
    • [ ] 依赖关系满足
    • [ ] 里程碑按时达成
    • [ ] 资源分配平衡

冲突解决检查清单

冲突检测 (Conflict Detection)

  • [ ] 冲突识别完整性

    • [ ] 决策分歧已识别
    • [ ] 资源竞争已发现
    • [ ] 优先级冲突已标记
    • [ ] 方法论差异已记录
  • [ ] 冲突严重性评估

    • [ ] 影响范围已评估
    • [ ] 解决紧急程度已确定
    • [ ] 升级条件已检查
    • [ ] 风险等级已分类

冲突解决 (Conflict Resolution)

  • [ ] 解决策略选择

    • [ ] 策略与冲突类型匹配
    • [ ] 解决成本可接受
    • [ ] 预期成功率 ≥ 0.7
    • [ ] 副作用风险可控
  • [ ] 解决过程验证

    • [ ] 所有当事Agent参与
    • [ ] 解决过程公平透明
    • [ ] 证据充分客观
    • [ ] 决策理由可追溯
  • [ ] 解决结果确认

    • [ ] 解决方案被接受
    • [ ] 后续行动明确
    • [ ] 学习经验记录
    • [ ] 预防措施制定

性能监控检查清单

实时监控 (Real-time Monitoring)

  • [ ] 响应时间监控

    • [ ] Agent激活时间 ≤ 200ms
    • [ ] 决策制定时间 ≤ 500ms
    • [ ] 任务执行时间符合预期
    • [ ] 总体响应时间 ≤ SLA
  • [ ] 资源使用监控

    • [ ] CPU使用率 ≤ 80%
    • [ ] 内存使用率 ≤ 75%
    • [ ] 网络带宽使用合理
    • [ ] 存储空间充足
  • [ ] 质量指标监控

    • [ ] 任务完成率 ≥ 95%
    • [ ] 结果准确性 ≥ 90%
    • [ ] 用户满意度 ≥ 85%
    • [ ] 错误率 ≤ 5%

周期性评估 (Periodic Assessment)

  • [ ] 性能趋势分析
    • [ ] 响应时间趋势稳定
    • [ ] 资源使用优化
    • [ ] 错误率下降趋势
    • [ ] 用户满意度提升

命令参考

Agent激活命令

bash
# 手动激活特定Agent
/activate-agent --type [agent_type] --confidence [0.0-1.0] --priority [high|medium|low]

# 示例
/activate-agent --type architect --confidence 0.9 --priority high
/activate-agent --type security --confidence 0.8 --priority medium

# 查询Agent状态
/agent-status --type [agent_type] --details [basic|full]
/agent-status --type all --details full

# Agent性能查询
/agent-performance --type [agent_type] --period [1h|24h|7d|30d]
/agent-performance --type frontend --period 24h

协作控制命令

bash
# 启动Agent协作
/start-collaboration --agents [agent1,agent2,...] --mode [hierarchical|collaborative|consultative|pipeline]

# 示例
/start-collaboration --agents architect,security,backend --mode hierarchical
/start-collaboration --agents frontend,qa --mode collaborative

# 协作状态监控
/collaboration-status --session-id [id] --details [summary|full]

# 协作优化
/optimize-collaboration --session-id [id] --strategy [efficiency|quality|speed]

路由管理命令

bash
# 路由策略查看
/routing-strategy --current --details [summary|full]

# 路由性能分析
/routing-performance --period [1h|24h|7d] --metrics [all|efficiency|quality|satisfaction]

# 路由优化
/optimize-routing --strategy [adaptive|performance|quality] --apply [true|false]

# 路由历史查询
/routing-history --limit [number] --filter [success|failure|all]

冲突管理命令

bash
# 冲突检测
/detect-conflicts --scope [current|all] --threshold [0.0-1.0]

# 冲突解决
/resolve-conflict --conflict-id [id] --strategy [priority|negotiation|compromise|expertise]

# 冲突历史
/conflict-history --period [24h|7d|30d] --status [resolved|pending|escalated]

# 冲突预防设置
/conflict-prevention --enable-rules [list] --threshold [0.0-1.0]

性能诊断命令

bash
# 系统性能检查
/system-health --comprehensive --include [agents|routing|collaboration|conflicts]

# 性能基准测试
/performance-benchmark --duration [minutes] --load [light|medium|heavy]

# 性能报告生成
/generate-report --type [performance|collaboration|routing] --period [24h|7d|30d] --format [json|html|pdf]

# 性能优化建议
/optimization-recommendations --focus [speed|quality|efficiency|cost] --priority [high|medium|low]

配置管理命令

bash
# 配置查看
/config-view --section [agents|routing|collaboration|performance] --format [json|yaml|table]

# 配置更新
/config-update --section [section] --key [key] --value [value] --validate

# 配置备份
/config-backup --include [all|agents|routing|collaboration] --format [json|yaml]

# 配置恢复
/config-restore --backup-file [path] --section [all|specific] --validate

学习与适应命令

bash
# 学习模式控制
/learning-mode --enable [true|false] --rate [0.1-1.0] --validation [strict|moderate|loose]

# 适应性调整
/adaptation-tuning --component [activation|routing|collaboration] --sensitivity [low|medium|high]

# 学习效果评估
/learning-assessment --period [7d|30d|90d] --metrics [accuracy|efficiency|satisfaction]

# 模型重训练
/retrain-models --component [all|activation|routing|conflict] --data-period [30d|90d|180d]

小结

Claude Code 的 Agent 协调机制展现了现代多智能体系统的几个关键特征:

核心创新

  1. 多因素智能激活: 关键词、上下文、历史、性能的综合评分
  2. 动态协作模式: 层次、协作、咨询、流水线的灵活切换
  3. 智能冲突解决: 优先级、协商、妥协、专业性的多层解决
  4. 自适应路由优化: 基于执行反馈的持续改进

技术优势

  • 精准激活: 70%+ 置信度阈值确保Agent选择准确性
  • 高效协作: 多种协作模式适应不同任务复杂度
  • 智能解决: 自动化冲突检测和多策略解决机制
  • 持续优化: 基于性能反馈的路由策略自适应调整

协作效果

  • 专业化优势: 11个专业Agent覆盖开发全生命周期
  • 协同增效: 多Agent协作实现单Agent无法达到的复杂任务处理
  • 质量保证: 多层验证和交叉检查确保输出质量
  • 用户满意: 智能匹配和持续优化提升用户体验

实用价值

  • 操作标准化: 详细检查清单确保流程一致性
  • 命令化管理: 丰富的命令集支持精细化控制
  • 性能可视: 全面监控和报告系统
  • 持续改进: 学习适应机制支持系统进化

这套 Agent 协调机制不仅支持了 Claude Code 当前的多Agent协作能力,也为未来更复杂的AI协作场景提供了可扩展的技术架构。通过检查清单和命令系统,使得复杂的协调机制变得可操作、可监控、可优化。


下一步: 查看 命令系统原理 了解24个核心命令的解析和执行机制

Claude Code 使用指南